fluke
¶
The fluke
module is the entry module of the fluke
framework. Here are defined generic
classes used by the other modules.
Submodules
This module contains (as submodules) the implementation of several the federated learning algorithms. |
|
This module contains the data utilities for |
|
This module contains the classes for the communication between the clients and the server. |
|
The module |
|
This module contains the definition of the evaluation classes used to perform the evaluation of the model client-side and server-side. |
|
This module contains the definition of several neural networks used in state-of-the-art federated learning papers. |
|
The module |
|
This module contains utility functions and classes used in |
Classes included in fluke
A dictionary that can be accessed with dot notation recursively. |
|
A cache class that can store data on disk. |
|
A reference to an object in the cache. |
|
A reference counter for an object in the cache. |
|
Environment class for the |
|
Subject class for the observer pattern. |
|
This metaclass is used to create singleton classes. |
Classes¶
class fluke.DDict
- class fluke.DDict(*args: dict, **kwargs: dict[str, Any])[source]¶
Bases:
dict
A dictionary that can be accessed with dot notation recursively.
Important
The
DDict
is a subclass of the built-indict
class and it behaves like a dictionary. However, the keys must be strings.Example
1d = DDict(a=1, b=2, c={'d': 3, 'e': 4}) 2print(d.a) # 1 3print(d.b) # 2 4print(d.c.d) # 3 5print(d.c.e) # 4
- diff(other: DDict) DDict [source]¶
Get the difference between two
DDict
.- Parameters:
- Returns:
The difference between the two
DDict
.- Return type:
Example
1d = DDict(a=1, b=2, c=3) 2e = DDict(a=1, b=3, c=4) 3print(d.diff(e)) # {'b': 3, 'c': 4}
- exclude(*keys: str)[source]¶
Create a new
DDict
excluding the specified keys.- Parameters:
*keys – The keys to be excluded.
- Returns:
The new DDict.
- Return type:
Example
1d = DDict(a=1, b=2, c=3) 2e = d.exclude('b', 'c') 3print(e) # {'a': 1}
- update(*args: dict, **kwargs: dict[str, Any])[source]¶
Update the
DDict
with the specified key-value pairs.- Parameters:
*args (dict) – Dictionary with the key-value pairs.
**kwargs – The key-value pairs.
Example
1d = DDict(a=1) 2print(d) # {'a': 1} 3d.update(b=2, c=3) 4print(d) # {'a': 1, 'b': 2, 'c': 3}
class fluke.FlukeCache
- class fluke.FlukeCache(path: str, **kwargs)[source]¶
Bases:
object
A cache class that can store data on disk.
- cleanup() None [source]¶
Clean up the cache by removing the objects that are not referenced.
This operation should not be necessary if the cache is used correctly.
- delete(key: str) None [source]¶
Remove an object from the cache without returning it.
If the key is not in the cache, nothing happens.
- Parameters:
key (str) – The key of the object.
- get(key: str, default: Any = None)[source]¶
Get the object identified by the key from the cache.
If the object is not in the cache, the default value is returned.
Note
The object is still in the cache after this operation.
- Parameters:
key (str) – The key of the object.
default (Any, optional) – The default value to return if the object is not in the cache. Defaults to None.
- Returns:
The object in the cache or the default value.
- Return type:
Any
- property occupied: int¶
Get the number of different objects in the cache.
- Returns:
The number of objects in the cache.
- Return type:
- pop(key: str, copy: bool = True) Any [source]¶
Pop an object from the cache given its key.
If the key is not in the cache,
None
is returned.
- push(key: str, value: Any) _ObjectRef [source]¶
Push an object to the cache.
Note
If the object that is pushed is already a cache reference, then the referenced object is already in the cache and its reference counter is incremented.
- Parameters:
key (str) – The key of the object.
value (Any) – The object to store in the cache.
- Returns:
The reference to the object in the cache.
- Return type:
private class fluke.FlukeCache._ObjectRef
- class fluke.FlukeCache._ObjectRef¶
Bases:
object
A reference to an object in the cache. The reference is a unique identifier that is used to store and retrieve the object from the cache.
private class fluke.FlukeCache._RefCounter
- class fluke.FlukeCache._RefCounter(value: Any, refs: int = 1)¶
Bases:
object
A reference counter for an object in the cache.
- dec() Any ¶
Decrement the number of references to the object in the cache.
- Returns:
The reference counter.
- Return type:
- property id: _ObjectRef¶
Get the unique identifier of the reference.
- Returns:
The unique identifier.
- Return type:
- inc() _RefCounter ¶
Increment the number of references to the object in the cache.
- Returns:
The reference counter.
- Return type:
class fluke.FlukeENV
- class fluke.FlukeENV(*args, **kwargs: dict[str, Any])[source]¶
Bases:
object
Environment class for the
fluke
framework. This class is a singleton and it contains environment settings that are used by the other classes. The environment includes:The device (
"cpu"
,"cuda[:N]"
,"auto"
,"mps"
);The
seed
for reproducibility;If the models are stored in memory or on disk (when not in use);
The evaluation configuration;
The saving settings;
The progress bars for the federated learning process, clients and the server;
The live renderer, which is used to render the progress bars.
- auto_device() device [source]¶
Set device to
cuda
ormps
if available, otherwisecpu
.- Returns:
The device.
- Return type:
- configure(cfg: DDict) None [source]¶
Configure the global settings.
- Parameters:
config (DDict) – The configuration.
- get_cache() FlukeCache [source]¶
Get the cache.
- Returns:
The cache.
- Return type:
Cache
- get_eval_cfg() DDict [source]¶
Get the evaluation configuration.
- Returns:
The evaluation configuration.
- Return type:
- get_live_renderer() Live [source]¶
Get the live renderer. The live renderer is used to render the progress bars.
- Returns:
The live renderer.
- Return type:
Live
- get_progress_bar(progress_type: str) Progress [source]¶
Get the progress bar. The possible progress bar types are:
FL
: The progress bar for the federated learning process.clients
: The progress bar for the clients.server
: The progress bar for the server.
- Parameters:
progress_type (str) – The type of progress bar.
- Returns:
The progress bar.
- Return type:
Progress
- Raises:
ValueError – If the progress bar type is invalid.
- is_inmemory() bool [source]¶
Check if the data is stored in memory.
- Returns:
If
True
, the data is stored in memory, otherwise it is stored on disk.- Return type:
- open_cache(path: str) None [source]¶
Open the cache at the specified path if the
inmemory
flag isFalse
.Note
The full path to the cache is
tmp/path
wherepath
is the specified path. We suggest to use as path the UUID of the experiment.- Parameters:
path (str) – The path to the cache.
- set_device(device: str) device [source]¶
Set the device. The device can be
cpu
,auto
,mps
,cuda
orcuda:N
, whereN
is the GPU index.- Parameters:
device (str) – The device as string.
- Returns:
The selected device as torch.device.
- Return type:
- set_eval_cfg(cfg: DDict) None [source]¶
Set the evaluation configuration.
- Parameters:
cfg (DDict) – The evaluation configuration.
- set_evaluator(evaluator: Evaluator) None [source]¶
Set the evaluator.
- Parameters:
evaluator (Evaluator) – The evaluator.
- set_inmemory(inmemory: bool) None [source]¶
Set if the data is stored in memory.
- Parameters:
inmemory (bool) – If
True
, the data is stored in memory, otherwise it is stored on disk.
interface fluke.ObserverSubject
- class fluke.ObserverSubject[source]¶
Bases:
object
Subject class for the observer pattern. The subject is the class that is observed and thus it holds the observers.
Example
1class MySubject(ObserverSubject): 2 def __init__(self): 3 super().__init__() 4 self._data = 0 5 6 @property 7 def data(self): 8 return self._data 9 10 @data.setter 11 def data(self, value): 12 self._data = value 13 self.notify() 14 15class MyObserver: 16 def __init__(self, subject): 17 subject.attach(self) 18 19 def update(self): 20 print("Data changed.") 21 22subject = MySubject() 23observer = MyObserver(subject) 24subject.data = 1 # "Data changed."
metaclass fluke.Singleton
- class fluke.Singleton[source]¶
Bases:
type
This metaclass is used to create singleton classes. A singleton class is a class that can have only one instance. If the instance does not exist, it is created; otherwise, the existing instance is returned.
Example
1class MyClass(metaclass=Singleton): 2 pass 3a = MyClass() 4b = MyClass() 5print(a is b) # True