Per-FedAVG
¶
Implementation of the [Per-FedAVG20] algorithm.
References
[Per-FedAVG20]
Alireza Fallah, Aryan Mokhtari, Asuman Ozdaglar. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. In NeurIPS (2020). URL: https://arxiv.org/abs/2002.07948
Classes included in fluke.algorithms.per_fedavg
Classes¶
- class fluke.algorithms.per_fedavg.PerFedAVGClient(index: int, train_set: FastDataLoader, test_set: FastDataLoader, optimizer_cfg: OptimizerConfigurator, loss_fn: Module, local_epochs: int, mode: str, beta: float, fine_tuning_epochs: int = 0, **kwargs: dict[str, Any])[source]¶
Bases:
Client