FedROD
¶
Implementation of the FedROD [FedROD22] algorithm.
References
[FedROD22]
Hong-You Chen and Wei-Lun Chao. On Bridging Generic and Personalized Federated Learning for Image Classification. In ICLR (2022). URL: https://openreview.net/pdf?id=I1hQbx10Kxn
Classes included in fluke.algorithms.fedrod
Compute the Balanced Softmax Loss. |
|
Classes¶
- class fluke.algorithms.fedrod.RODModel(global_model: EncoderHeadNet, local_head: EncoderHeadNet)[source]¶
Bases:
Module
- class fluke.algorithms.fedrod.BalancedSoftmaxLoss(sample_per_class: Tensor)[source]¶
Bases:
Module
Compute the Balanced Softmax Loss.
- Parameters:
sample_per_class (torch.Tensor) – Number of samples per class.
- class fluke.algorithms.fedrod.FedRODClient(index: int, train_set: FastDataLoader, test_set: FastDataLoader, optimizer_cfg: OptimizerConfigurator, loss_fn: Module, local_epochs: int, **kwargs: dict[str, Any])[source]¶
Bases:
Client
- class fluke.algorithms.fedrod.FedROD(n_clients: int, data_splitter: DataSplitter, hyper_params: DDict | dict[str, Any])[source]¶
Bases:
CentralizedFL