FedROD
¶
Implementation of the FedROD [FedROD22] algorithm.
References
Hong-You Chen and Wei-Lun Chao. On Bridging Generic and Personalized Federated Learning for Image Classification. In ICLR (2022). URL: https://openreview.net/pdf?id=I1hQbx10Kxn
Classes included in fluke.algorithms.fedrod
Model that combines a global model and a local head. |
|
Compute the Balanced Softmax Loss. |
|
Classes¶
- class fluke.algorithms.fedrod.RODModel(global_model: EncoderHeadNet, local_head: EncoderHeadNet)[source]¶
Bases:
Module
Model that combines a global model and a local head. During the forward pass, the global model, formed by an encoder and a head, is used to extract the representation of the input (using the encoder). The representation is then passed to the local head and the global head. The output of the local head is added to the output of the global head and returned as the final output.
- Parameters:
global_model (EncoderHeadNet) – Global model.
local_head (EncoderHeadNet) – Local head.
- class fluke.algorithms.fedrod.BalancedSoftmaxLoss(sample_per_class: Tensor, reduction: Literal['mean', 'sum'] = 'mean')[source]¶
Bases:
Module
Compute the Balanced Softmax Loss.
- Parameters:
sample_per_class (torch.Tensor) – Number of samples per class.
- class fluke.algorithms.fedrod.FedRODClient(index: int, train_set: FastDataLoader, test_set: FastDataLoader, optimizer_cfg: OptimizerConfigurator, loss_fn: Module, local_epochs: int, fine_tuning_epochs: int = 0, clipping: float = 0, **kwargs: dict[str, Any])[source]¶
Bases:
Client