FedHP
¶
Implementation of the FedHP: Federated Learning with Hyperspherical Prototypical Regularization [FedHP24] algorithm. .. rubric:: References
Samuele Fonio, Mirko Polato, Roberto Esposito. FedHP: Federated Learning with Hyperspherical Prototypical Regularization. In ESANN (2024). URL: https://www.esann.org/sites/default/files/proceedings/2024/ES2024-183.pdf
Classes included in fluke.algorithms.fedhp
Wrapper network for the encoder model and the prototypes. |
|
Large margin loss separation between hyperspherical protoypes. |
|
Classes¶
- class fluke.algorithms.fedhp.ProtoNet(encoder: Module, n_protos: int, proto_size: int)[source]¶
Bases:
Module
Wrapper network for the encoder model and the prototypes.
- class fluke.algorithms.fedhp.SeparationLoss(reduction: Literal['mean', 'sum'] = 'mean')[source]¶
Bases:
Module
Large margin loss separation between hyperspherical protoypes.
- Parameters:
reduction (str) – Specifies the reduction to apply to the output: ‘mean’ | ‘sum’.
- class fluke.algorithms.fedhp.FedHPClient(index: int, model: Module, train_set: FastDataLoader, test_set: FastDataLoader, optimizer_cfg: OptimizerConfigurator, loss_fn: Module, local_epochs: int, n_protos: int, lam: float, fine_tuning_epochs: int = 0, **kwargs: dict[str, Any])[source]¶
Bases:
PFLClient