FedLC
¶
Implementation of the [FedLC22] algorithm.
References
[FedLC22]
Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, Chao Wu. Federated Learning with Label Distribution Skew via Logits Calibration. In ICML (2022). URL: https://arxiv.org/abs/2209.00189
Classes included in fluke.algorithms.fedlc
Calibrated Loss function. |
|
Classes¶
- class fluke.algorithms.fedlc.CalibratedLoss(tau: float, label_distrib: Tensor, reduction: Literal['mean', 'sum'] = 'mean')[source]¶
Bases:
Module
Calibrated Loss function.
- Parameters:
tau (float) – calibration parameter.
label_distrib (torch.Tensor) – Label distribution.
- class fluke.algorithms.fedlc.FedLCClient(index: int, train_set: FastDataLoader, test_set: FastDataLoader, optimizer_cfg: OptimizerConfigurator, loss_fn: Module, local_epochs: int, tau: float, fine_tuning_epochs: int = 0, **kwargs: dict[str, Any])[source]¶
Bases:
Client