publications

List of my publications in reversed chronological order. (Last update 14/06/2024)

2024

  1. TSCJ15
    PriVeriFL: Privacy-Preserving and Aggregation-Verifiable Federated Learning
    Transactions on Services Computing 2024
  2. ITADATAC30
    FedHP: Federated Learning with Hyperspherical Prototypical Regularization
    Samuele Fonio, Roberto Esposito
    In Italian Conference on Big Data and Data Science 2024
  3. ESANNC29
    Vision Language Models as Policy Learners in Reinforcement Learning Environments
    In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2024
  4. ESANNC28
    FedHP: Federated Learning with Hyperspherical Prototypical Regularization
    Samuele Fonio, Roberto Esposito
    In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2024
  5. KDDC27
    A Survey on Hypergraph Neural Networks: An In-Depth and Step-By-Step Guide
    Kim, Sunwoo, Lee, Soo Yong, Gao, Yue, Antelmi, Alessia,  Polato, Mirko, and Shin, Kijung
    In ACM Conference on Knowledge Discovery and Data Mining 2024

2023

  1. CSURJ14
    A Survey on Hypergraph Representation Learning
    Antelmi, Alessia, Cordasco, Gennaro,  Polato, Mirko, Scarano, Vittorio, Spagnuolo, Carmine, and Yang, Dingqi
    ACM Comput. Surv. 2023
  2. SEBDC26
    Boosting Methods for Federated Learning
    Esposito, R.,  Polato, M., and Aldinucci, M.
    In Symposium on Advanced Database System (to appear) 2023
  3. TheWebConfW05
    1st Workshop on Federated Learning Technologies
    Polato, M., Esposito, R., Riviera, W., Xu, Z., and King, I.
    In Companion Proceedings of the Web Conference 2023
  4. CFC25
    Experimenting with Emerging RISC-V Systems for Decentralised Machine Learning
    Mittone, G., Tonci, N., Birke, R., Colonnelli, I., Medic, D., Bartolini, A., Esposito, R., Parisi, E., Beneventi, F.,  Polato, M., Torquati, M., Benini, L., and Aldinucci, M.
    In ACM International Conference on Computing Frontiers 2023

2022

  1. ICANNC24
    Conditioned Variational Autoencoder for top-N item recommendation
    Carraro, T.,  Polato, M., Bergamin, L., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2022
  2. ESANNC23
    Bayes Point Rule Set Learning
    Aiolli, F., Bergamin, L., Carraro, T., and Polato, M.
    In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2022
  3. IJCNNC22
    Novel Applications for VAE-based Anomaly Detection Systems
    Bergamin, L., Carraro, T.,  Polato, M., and Aiolli, F.
    In International Joint Conference on Neural Networks 2022
  4. IJCNNC21
    Boosting the Federation: Cross-Silo Federated Learning without Gradient Descent
    Polato, M., Esposito, R., and Aldinucci, M.
    In International Joint Conference on Neural Networks 2022
  5. IEEE THMSJ13
    Dissociation Between Users’ Explicit and Implicit Attitudes Toward Artificial Intelligence: An Experimental Study
    Fietta, V., Zecchinato, F., Stasi, B.D.,  Polato, M., and Monaro, M.
    IEEE Transactions on Human-Machine Systems 2022
  6. NEUCOMJ12
    PRL: A game theoretic large margin method for interpretable feature learning
    Polato, M., Faggioli, G., and Aiolli, F.
    Neurocomputing 2022

2021

  1. JCSJ11
    On the feasibility of crawling-based attacks against recommender systems
    Aiolli, F., Conti, M., Picek, S., and Polato, M.
    Journal of Computer Security 2021
  2. ENTROPYJ10
    Propositional kernels
    Polato, M., and Aiolli, F.
    Entropy 2021
  3. IJCNNC20
    Federated Variational Autoencoder for Collaborative Filtering
    Polato, M.
    In International Joint Conference on Neural Networks 2021
  4. ESANNC19
    Privacy-Preserving Kernel Computation For Vertically Partitioned Data
    Polato, M., Gallinaro, A., and Aiolli, F.
    In 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2021
  5. SSCIC18
    Efficient Multilingual Deep Learning Model for Keyword Categorization
    Polato, M., Demchenko, D., Kuanyshkereyev, A., and Navarin, N.
    In IEEE Symposium Series on Computational Intelligence 2021
  6. OMEGAJ09
    Social Support and Help-Seeking Among Suicide Bereaved: A Study With Italian Survivors
    Entilli, L., Leo, D.D., Aiolli, F.,  Polato, M., Gaggi, O., and Cipolletta, S.
    Omega (United States) 2021

2020

  1. PATRECJ08
    Learning deep kernels in the space of monotone conjunctive polynomials
    Lauriola, I.,  Polato, M., and Aiolli, F.
    Pattern Recognition Letters 2020
  2. JCPJ07
    Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol
    Muraro, C.,  Polato, M., Bortoli, M., Aiolli, F., and Orian, L.
    Journal of Chemical Physics 2020
  3. UMAPW04
    A Look Inside the Black-Box: Towards the Interpretability of Conditioned Variational Autoencoder for Collaborative Filtering
    Carraro, T.,  Polato, M., and Aiolli, F.
    In Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization 2020
  4. UMAPC17
    Recency Aware Collaborative Filtering for Next Basket Recommendation
    Faggioli, G.,  Polato, M., and Aiolli, F.
    In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization 2020
  5. ESORICSC16
    Big Enough to Care Not Enough to Scare! Crawling to Attack Recommender Systems
    Aiolli, F., Conti, M., Picek, S., and Polato, M.
    In 25th European Symposium on Research in Computer Security, ESORICS 2020 2020

2019

  1. UMAPW03
    Tag-based user profiling: A game theoretic approach
    Faggioli, G.,  Polato, M., and Aiolli, F.
    In Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization 2019
  2. NEUCOMJ06
    Boolean kernels for rule based interpretation of support vector machines
    Polato, M., and Aiolli, F.
    Neurocomputing 2019
  3. AAAIC15
    Interpretable preference learning: A game theoretic framework for large margin on-line feature and rule learning
    Polato, M., and Aiolli, F.
    In 33rd AAAI Conference on Artificial Intelligence 2019
  4. ICANNC14
    Evaluation of Tag Clusterings for User Profiling in Movie Recommendation
    Faggioli, G.,  Polato, M., Lauriola, I., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2019
  5. ICANNC13
    Playing the Large Margin Preference Game
    Polato, M., Faggioli, G., Lauriola, I., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2019
  6. SACC12
    Mind your wallet’s privacy: Identifying bitcoin wallet apps and user’s actions through network traffic analysis
    Aiolli, F., Gangwal, A., Conti, M., and Polato, M.
    In ACM Symposium on Applied Computing 2019
  7. DRNAJ05
    Learning with subsampled kernel-based methods: Environmental and financial applications
    Shahrokhabadi, M.A., Neisy, A., Perracchione, E., and Polato, M.
    Dolomites Research Notes on Approximation 2019

2018

  1. RECSYSW02
    Efficient Similarity Based Methods For The Playlist Continuation Task
    Faggioli, G.,  Polato, M., and Aiolli, F.
    In ACM Recommender Systems Challenge 2018 2018
  2. COMPUTINGJ04
    Time and activity sequence prediction of business process instances
    Polato, M., Sperduti, A., Burattin, A., and Leoni, M.
    Computing 2018
  3. ENTROPYJ03
    A novel Boolean kernels family for categorical data
    Polato, M., Lauriola, I., and Aiolli, F.
    Entropy 2018
  4. NEUCOMJ02
    Boolean kernels for collaborative filtering in top-N item recommendation
    Polato, M., and Aiolli, F.
    Neurocomputing 2018
  5. SSCIC11
    LSTM networks for data-aware remaining time prediction of business process instances
    Navarin, N., Vincenzi, B.,  Polato, M., and Sperduti, A.
    In IEEE Symposium Series on Computational Intelligence 2018
  6. ESANNC10
    Boolean kernels for interpretable kernel machines
    Polato, M., and Aiolli, F.
    In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2018
  7. ESANNC09
    The minimum effort maximum output principle applied to Multiple Kernel Learning
    Lauriola, I.,  Polato, M., and Aiolli, F.
    In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2018
  8. ICANNC08
    A game-theoretic framework for interpretable preference and feature learning
    Polato, M., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2018
  9. ICANNC07
    Learning preferences for large scale multi-label problems
    Lauriola, I.,  Polato, M., Lavelli, A., Rinaldi, F., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2018
  10. PhD Thesis
    Definition and learning of logic-based kernels for categorical data, and application to collaborative filtering
    Polato, Mirko
    2018

2017

  1. NEUCOMJ01
    Exploiting sparsity to build efficient kernel based collaborative filtering for top-N item recommendation
    Polato, M., and Aiolli, F.
    Neurocomputing 2017
  2. PRECEDEC06
    Model-free predictive current control for a SynRM drive based on an effective update of measured current responses
    Ru, D.D.,  Polato, M., and Bolognani, S.
    In IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics 2017
  3. ICANNC05
    Classification of categorical data in the feature space of monotone DNFs
    Polato, M., Lauriola, I., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2017
  4. ICANNC04
    Radius-margin ratio optimization for dot-product boolean kernel learning
    Lauriola, I.,  Polato, M., and Aiolli, F.
    In International Conference on Artificial Neural Networks and Machine Learning 2017
  5. IIRC03
    Disjunctive Boolean Kernel based Collaborative Filtering for top-N item recommendation
    Polato, M., and Aiolli, F.
    In Italian Conference on Information Retrieval 2017

2016

  1. RECSYSW01
    A preliminary study on a recommender system for the job recommendation challenge
    Polato, M., and Aiolli, F.
    In Recommender Systems Challenge 2016
  2. ESANNC02
    Kernel based collaborative filtering for very large scale top-N item recommendation
    Polato, M., and Aiolli, F.
    In 24th European Symposium on Artificial Neural Networks 2016

2014

  1. IJCNNC01
    Data-aware remaining time prediction of business process instances
    Polato, M., Sperduti, A., Burattin, A., and De Leoni, M.
    In Proceedings of the International Joint Conference on Neural Networks 2014