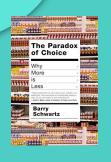


«We are leaving the Information Age and entering the **Recommendation Age** [...] Information gathering is no longer the issue - making smart decisions based on the information is now the trick [...] So recommendations act as shortcuts through the information mass, getting us to the right, or "right enough" answer.»

-CHRIS ANDERSON (THE LONG TAIL, 2006)



THE PARADOX OF CHOICE – WHY MORE IS LESS

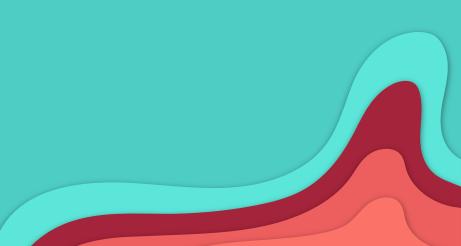
- 60% of the customers stopped at the booth;
- On average, 2 tastes;
- Only the **3%** of the customers purchased.

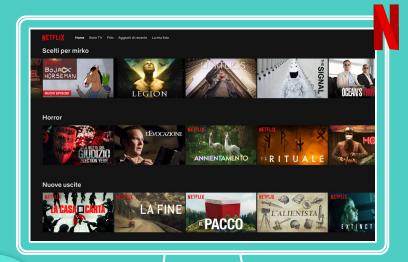
6 flavors of jam

- 40% of the customers stopped at the booth;
- On average, 2 tastes;
- **30%** of the customers purchased.

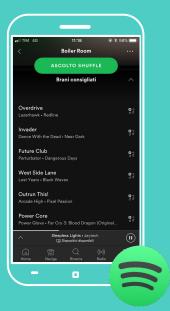
WHAT IS A RECOMMENDER SYSTEM?

A recommender system is a subclass of information filtering system that seeks to predict the preference a user would give to an item.





RECSYS IN EVERYDAY LIFE



RECSYS INGREDIENTS

USERS

ITEMS

RATINGS

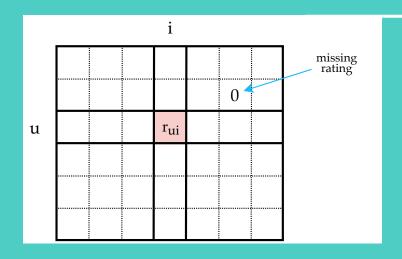
USER FEEDBACK

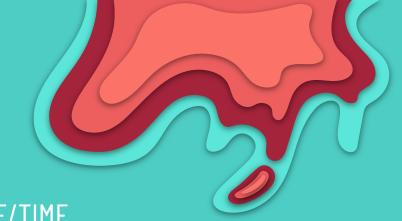
EXPLICIT FEEDBACK

IMPLICIT FEEDBACK

RATING MATRIX

- Explicit feedback: the rating is expressed inside a range of values, e.g., [1,5] like in the 5 stars rating systems;
- Implicit feedback: usually the rating is binary (either 0 or 1), where 1 means an interaction and 0 a missing interaction.





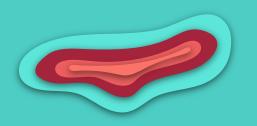
CONTEXT

DATE/TIME

LOCATION

WEATHER

MOOD



MOST COMMON APPROACHES

COLLABORATIVE

Similar users like similar items. The similarity is computed on the basis of historical choices

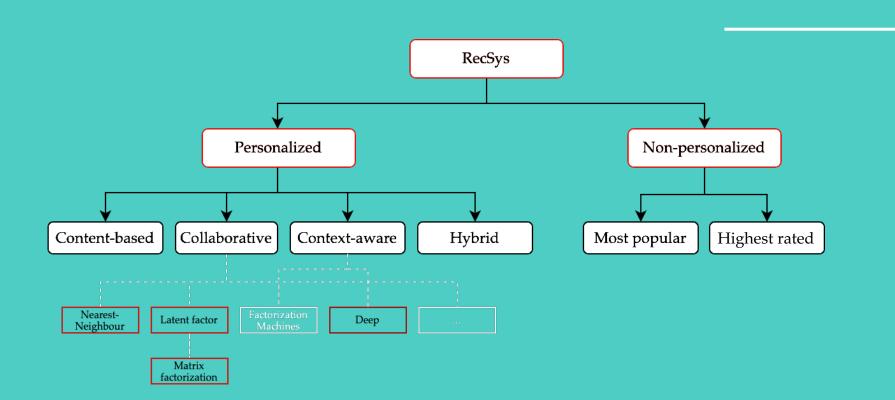
CONTENT-BASED

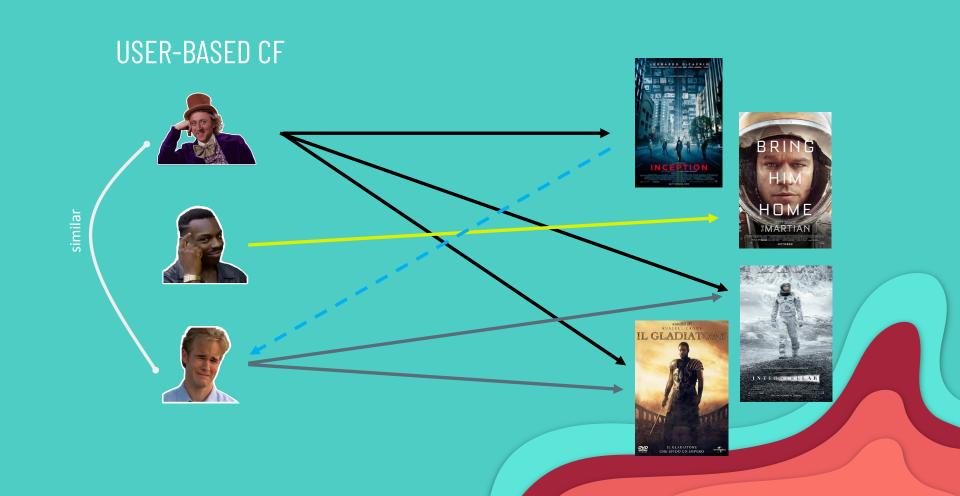
User likes items with similar content (i.e., features) to the ones liked in the past

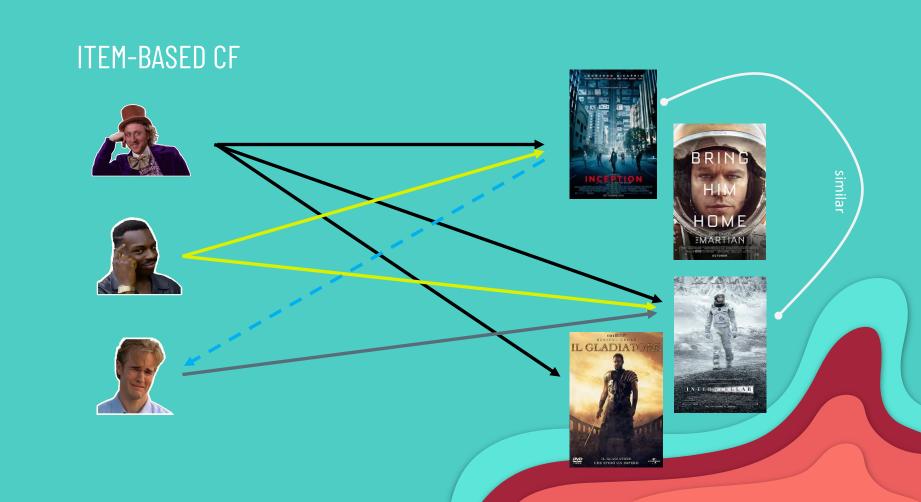
HYBRID

Merges the PROS of both CF and CB

RECSYS TAXONOMY

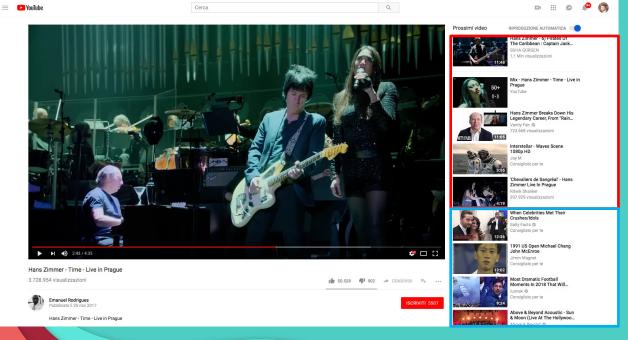






CONTENT-BASED CF

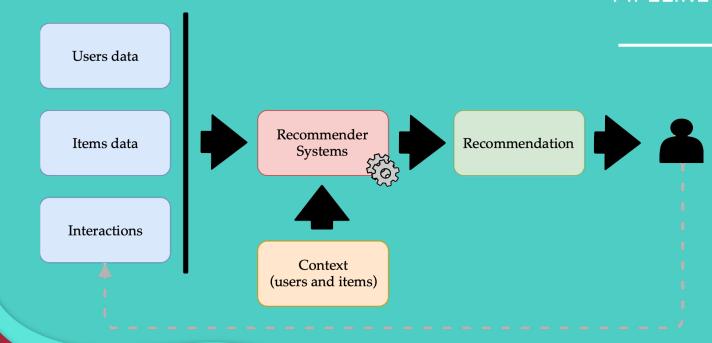
AN EVERYDAY
_ EXAMPLE



CF ITEM-BASED + CONTENT-BASED

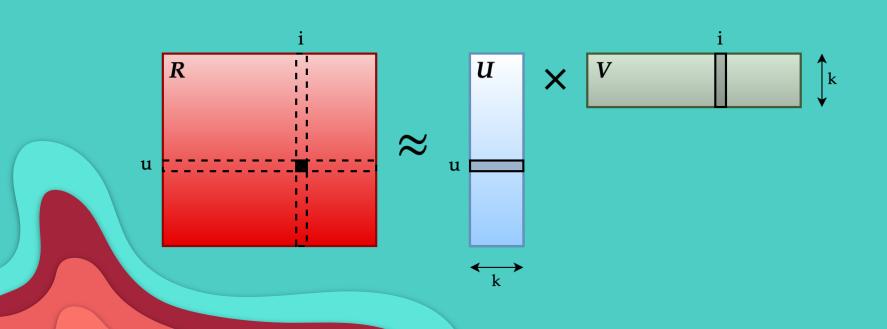
CF USER-BASED

RECSYS STANDARD PIPELINE

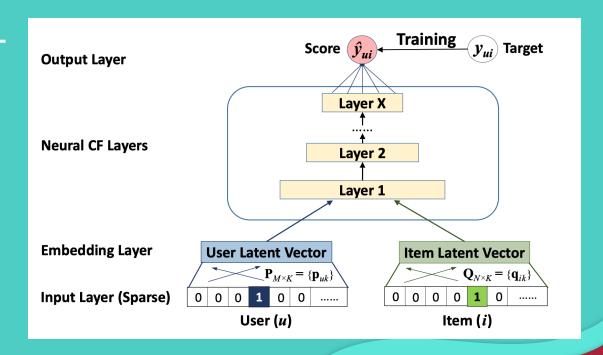


MATRIX FACTORIZATION

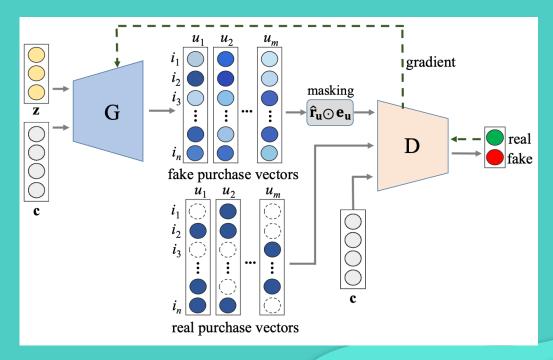
 $\mathbf{R} pprox \mathbf{P} \mathbf{Q}^{ op} \quad \mathbf{R} \in \mathbb{R}^{m imes n}, \mathbf{P} \in \mathbb{R}^{n imes k}, \mathbf{Q} \in \mathbb{R}^{m imes k}$



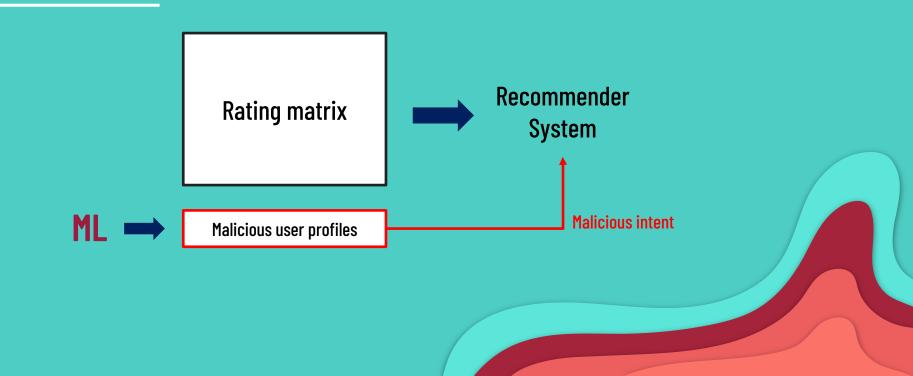
DEEP NEURAL NETWORK



GENERATIVE APPROACHES

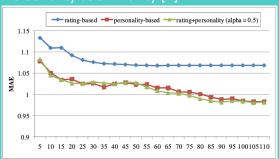


SECURITY & PRIVACY IN RECSYS

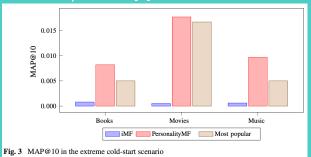


PERSONALITY IN RECSYS

Personality as similarity [1]



Personality and MF [2]



[1] Hu, R., and Pu, P. (2010). Using Personality Information in Collaborative Filtering for New Users. In Proceedings of the 2nd ACM RecSys'10 Workshop on Recommender Systems and the Social Web (pp. 17–24).

[2] Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., and Cantador, I. (2016). Alleviating the new user problem in collaborative filtering by exploiting personality information. User Modeling and User-Adapted Interaction, 26(2), 1-35.

Personality and ratings [3]

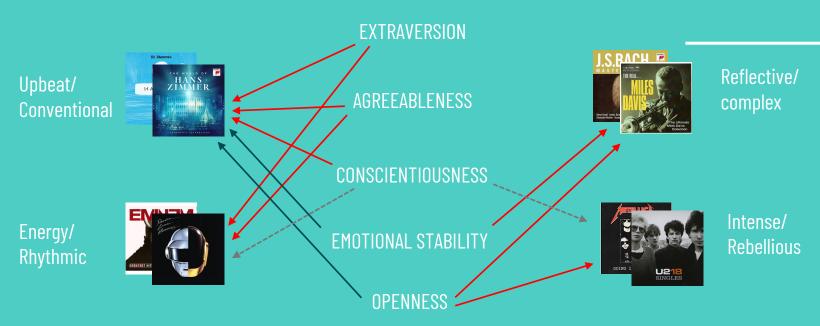
Table 4. A summary of proportions of consumptions across various categories. (p < 0.001: *** p < 0.01 ** p < 0.05 *)

	Openness	Conscientiousness	Extroversion	Agreeableness	Neuroticism
Action		low > high (+2%) *			low > high (+2%)**
Adventure	low > high (+1%) *				low > high (+1%) *
Comedy					high > low (+2%) *
Drama	high > low (+4%) **				
Fantasy	low > high (+1%) ***				low > high (+1%) *
Romance	high > low (+1%) **	high > low (+2%) **	low > high (+1%)*		high > low (+1%) *
Thriller	low > high (+1%) *	low > high (+2%) *			low > high (+1%) *

[3] Karumur, R. P., Nguyen, T. T., and Konstan, J. A. (2016). Exploring the Value of Personality in Predicting Rating Behaviors. In Proceedings of the 10th ACM Conference on Recommender Systems - RecSys '16 (pp. 139-142).

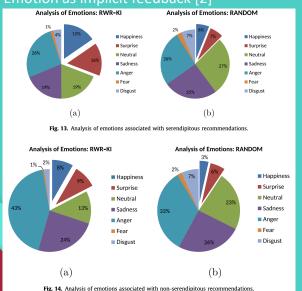
BIG 5

PERSONALITY AND MUSIC PREFERENCES

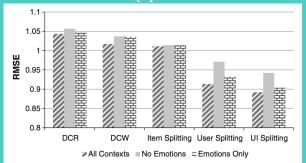


EMOTIONS IN RECSYS

Emotion as implicit feedback [2]

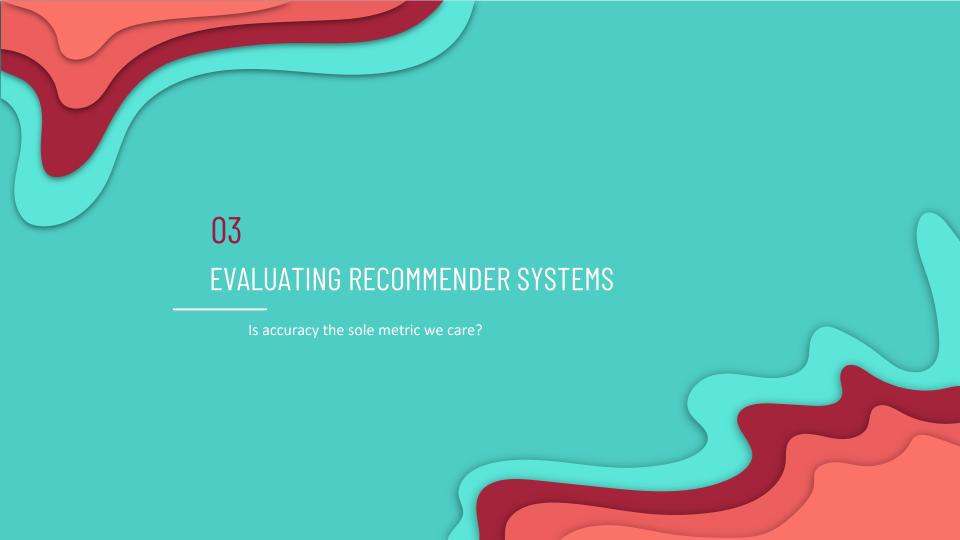


Emotion as context [1]



[1] Zheng, Y., Mobasher, B., and Burke, R. (2016). Emotions in Context-Aware Recommender Systems (pp. 311–326). In M. Tkalčič, B. De Carolis, M. de Gemmis, A. Odić, and A. Košir (Eds.), Emotions and Personality in Personalized Services: Models, Evaluation and Applications

[2] Gemmis, M. De, Lops, P., Semeraro, G., and Musto, C. (2015). An investigation on the serendipity problem in recommender systems. Information Processing and Management, 51(5), 695-717.



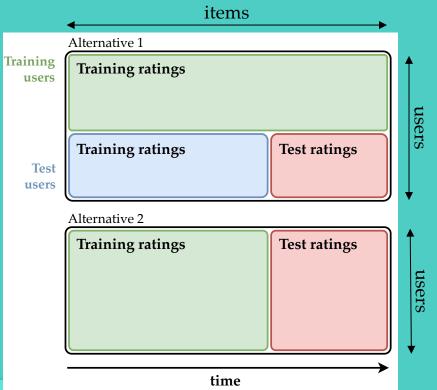
Precision-oriented

- Standard metrics borrowed from Information Retrieval and dal Machine learning
- E.g., Precision, Recall, AUC, Hit@k, AP@k, MRR, ...

Experience-oriented

- Focus on **user-experience**
 - Novelty
 - Diversity
 - Serendipity

HOW TO PARTITION ► A DATASET



EXPERIENCE-ORIENTEDMEASURES

DIVERSITY

- Internal difference in the current experience (recommendation)
- Assessed inside the set of recommended items independently from the user history
- Useful to offer/show diverse items

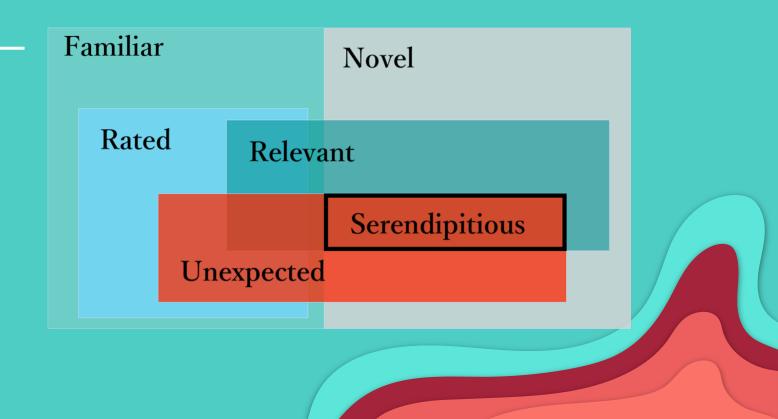
NOVELTY

- Difference of the current experience w.r.t. the past ones
- Globally speaking is the opposite of the popularity
- Useful to offer/show nevel items

SERENDIPITY

- Special case of novelty: relevant + novel + unexpected
- Includes an emotional component
- Not clear how to evaluate

VISUAL INTUITION



LONG-TAIL DISTRIBUTION

Long Tail Products DATA SPARSITY

TYPICAL CHALLENGES

COLD START

Considering different situations, such as mood, time, individual, or collaborative scenarios

CTX-AWARENESS

