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Reinforcement Learning - A gentle introduction

Part I



Reinforcement Learning

• Agent-oriented learning—learning by interacting with an  
environment to achieve a goal  

• Learning by trial and error, with only delayed evaluative  
feedback (reward)  

• Sequential decision making: non i.i.d data 

• Agent’s actions affect the subsequent data it receives  
(i.e., by acting it may change the environment)

Reinforcement learning is learning what to do—how to map situations to actions—so as to maximise a 
numerical reward signal. 

Sutton & Barto. Reinforcement learning: An introduction 
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RL success: Learning to walk
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Haarnoja, T., Zhou, A., Ha, S., Tan, J., Tucker, G., & Levine, S. (2019). Learning to Walk via Deep Reinforcement Learning. ArXiv, abs/1812.11103. 



RL success: Playing ATARI games
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Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, 
I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S. & Hassabis, D. (2015), 'Human-level control through deep reinforcement learning', Nature 518 (7540), 529--533. 



RL success: Mastering Go, Chess, …
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Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2017). Mastering Chess and Shogi by Self-Play 
with a General Reinforcement Learning Algorithm. ArXiv, abs/1712.01815.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; 
Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T. & Hassabis, D. (2016), 'Mastering the Game of Go with Deep Neural Networks and Tree Search', Nature 529 (7587), 484--489. 



The RL interface

• Environment may be unknown, nonlinear, stochastic and complex 

• Trajectory/History:  sequence of Observation, Reward, Action… 

• States are Markovian, i.e., the state is a sufficient statistic of the future

a.k.a. the agent-environment interface

R. Sutton 2015 @ NIPS
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[Finite] Markov Decision Process

• S - finite set of states 

• A - finite set of actions 

• R - finite set of rewards (or a reward function) 

• P - transition probability matrix that describes a Markov dynamics 

•  - discount rateγ ∈ [0,1]

The foundational RL framework

p(s |s′ , a) = ℙ(St+1 = s′ |St = s, At = a)

A Markov Decision Process is a tuple ⟨S, A, R, P, γ⟩

The future is independent of 
the past given the present 
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Example of MDP: Student MDP

• Goal: Prepare for the exam and go  
to sleep 

• Episodic MDP: each trajectory ends 
on the Sleep state (loop forever with  
reward zero) 

• Example of episode : 
C1 FB C1 C2 C3 C2 Sleep→ → → → → →
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D. Silver 2015

FB

C1 C2 C3

Sleep



Return (G)

• Reward hypothesis: All goals can be described by the maximisation of the 
expected cumulative reward  

• Formally: the agent seeks to maximise the so-called expected return 

• Return at time step t is defined as

The agent aims to maximize it

Gt = Rt+1 + γRt+2 + γ2Rt+3 + …

=
∞

∑
k=0

γkRt+k+1

= Rt+1 + γGt+1
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Why the discount rate?

• Mathematically convenient to discount rewards (i.e., bounded return) 

• Avoids infinite returns in cyclic Markov processes  

• It encodes the uncertainty about the future 

• We can adjust  to our needs. E.g, in financial applications, immediate rewards may 
earn more interest than delayed rewards  

• … however it is possible to use undiscounted reward (i.e. γ = 1)

γ

There are a bunch of reasons…

13



Policy ( )π

• Describes the agent’s behaviour 

• It is a map from state to action  

• Deterministic policy: given the current state s, the agent performs a specific action 

• Stochastic policy: given the current state s, the agent acts according to a 
probability distribution over all possible actions

The agent’s behaviour

π(s) = a

∀a ∈ A, π(a |s) = ℙ(At = a |St = s)
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s.t. ∑
a∈A

π(a |s) = 1



Value Function

• Used to evaluate the goodness/badness of states according to a policy 

• Formally, the value function of a state s under a policy  is the expected return when starting 
in s and following  thereafter  

• State-value function 

• Action-value function

π
π

How good/bad is the situation?

vπ(s) ≐ 𝔼π [Gt ∣ St = s] = 𝔼π [
∞

∑
k=0

γkRt+k+1 ∣ St = s]

qπ(s, a) ≐ 𝔼π [Gt ∣ St = s, At = a] = 𝔼π [
∞

∑
k=0

γkRt+k+1 ∣ St = s, At = a]
15



Bellman Expectation Equation

• BEE for  

• BEE for 

vπ

qπ

Breaks down the value function into two parts: the immediate reward plus the discounted future values

vπ(s) ≐ 𝔼π [Gt ∣ St = s]
= 𝔼π [Rt+1 + γGt+1 ∣ St = s]
= 𝔼π [Rt+1 + γvπ(St+1) ∣ St = s]
= ∑

a∈A

π(a |s)qπ(s, a)

qπ(s, a) = 𝔼π [Rt+1 + γqπ(St+1, At+1) |St = s, At = a]
= R(s, a) + γ∑

s′ ∈S

p(s′ |s, a)vπ(s)
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Optimal Value Function

• The optimal state-value function  is the maximum value function over all 
policies  

• The optimal action-value function  is the maximum action-value function 
over all policies 

v*(s)

q*(s, a)

What is the best we can do?

v*(s) = max
π

vπ(s)

q*(s, a) = max
π

qπ(s, a)
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Optimal Policy

• “Greedyfication”: given an optimal action-value function  , the optimal policy 
can be computed by greedily selecting the action according to   

• The optimal policy is deterministic 

• There is always at least one deterministic optimal policy 

q*
q*

The final goal of the agent

π*(a |s) = {
1 if a = arg max

a∈A
q*(s, a)

0 otherwise
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Bellman Optimality Equation

• BOE for  

• BOE for 

v*

q*

This is what we want to solve

v*(s) = max
a∈A(s)

qπ*
(s, a)

= max
a

𝔼π* [Gt ∣ St = s, At = a]
= max

a
𝔼π* [Rt+1 + γGt+1 ∣ St = s, At = a]

= max
a

𝔼 [Rt+1 + γv* (St+1) ∣ St = s, At = a]
= max

a ∑
s′ 

p (s′ ∣ s, a) [R(s, a) + γv* (s′ )]

q*(s, a) = 𝔼 [Rt+1 + γ max
a′ 

q* (St+1, a′ ) ∣ St = s, At = a]
= ∑

s′ 

p (s′ ∣ s, a) [R(s, a) + γ max
a′ 

q* (s′ , a′ )]
19



Tabular methods - The theoretical foundation of RL

Part II



Tabular methods

• When the underlying MDP is small,  and   can be stored in a table, called V-
Table and Q-Table, respectively 

• Popular tabular methods: 

• Monte-Carlo 

• Temporal-Difference Learning 

• Q-Learning 

• SARSA

vπ qπ

They use tables!
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How does the agent learn?

• GOAL: solving the Bellman Optimality Equation! 

• PROBLEM: BOE is non-linear and it has no closed form solution (in general)  

• SOLUTIONS: 

• Known MDP: we know how the world works (unrealistic in practice!), thus we can 
solve BOE using Dynamic Programming 

• Unknown MDP: we can only experience the environment. Trial-and-error 
based learning: the agent explore the environment and incrementally improves 
its own policy

a.k.a. Fantastic policies and how to find them
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(Generalised) Policy Iteration

• Two-step procedure until convergence (i.e., no  
improvements) starting from an arbitrary policy: 

1. Policy evaluation: compute the  
value function(s) for all states according to  
the current policy 

2.Policy improvement: greedyfication 
according to the current estimation of the 
value function

 The dance of policy and value  (Cit. R. Sutton)

R. Sutton 2015 @ NIPS
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Policy Iteration on Grid World
Reward: -1 for each step, 0 if the target state is reached
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What if we do not know the MDP?

• The agent has to learn from experience! 

• The agent acts in the environment and adjusts its policy on the basis of the 
obtained rewards 

• Model-based: the agent use its experience to create a model of the environment 
and then it simulates/plans over the learned model 

• Model-free: the agent does not care about building a model of the world, it simply 
wants to know how to act in every situation!

Explore & Exploit
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Monte-Carlo control

• Given an arbitrary policy , and a Q-Table  
randomly initialised. Repeat: 

➡ Sample an episode by following the policy  

➡ For each transition  update the 
average return  from s to a, i.e., 

 

➡ Update  according to  

• In the limit (# episodes ), and ensuring that all actions in all states are selected infinitely 
often  

π

π

⟨st, at, rt, st+1⟩

q(s, a) ← average G from s with action a

π q

→ ∞

One of the easiest control methods (for episodic MDPs*)

q(s, a) → q*(s, a)
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Exploration vs Exploitation

• Pure greedyfication may lead to poor exploration of the environment with a 
consequent risk to learn a suboptimal policy 

• We need to ensure that all actions are taken in all states (infinitely often in the limit)  

• -greedy explorationϵ

We do not want to leave anything behind

at = {
arg max

a∈A
qπ(a, st) with probability 1 − ϵ

any action with probability ϵ

27



Temporal-Difference learning

• Model-free method that is based on value function updates similar to SGD 

• Starting from an arbitrary value function, at every time step t (i.e., after each action 
with transition ) update the value-function as 

• IDEA: improve our estimate of v (or q) using the new gathered experience

⟨s, a, r, s′ ⟩

If one had to identify one idea as central and novel to reinforcement learning, it would 
undoubtedly be temporal-difference (TD) learning. 

Andrew Barto and Richard S. Sutton

v(s) ← v(s) + α [r + γv(s′ ) − v(s)]
TD Error

28

TD Target
Learning rate



Q-Learning: Off-policy TD control

• Off-policy: The agent learns the optimal policy while acting according to an 
“arbitrary” policy, i.e., the update rule does not depend on the used policy! 

• Temporal-Difference based update  

• Needs exploration: -greedy policy

(s a s′ )

ϵ

One of the early breakthrough in RL

q(s, a) ← q(s, a) + α [r + γ max
a′ 

q (s′ , a′ ) − q(s, a)]

29



Q-Learning algorithm
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Approximated methods - RL @ scale

Part III



What’s wrong with tabular solutions?
They do not scale!

• Real-world problems are too big for being stored in tables! 

• Backgammon:  states  

• Chess:  states 

• Go:  states  

• Moreover, we need more flexible ways to represent 
the states!

1020

1071

10170
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Value Function Approximation

• Approximate the value function using a function approximator 

• The approximator can be whatever you want 

• Linear combination of features 

• Neural Networks 

• Decision trees 

• …

This is how we scale up

̂v(s, θ) ≈ vπ(s)

̂q(s, a, θ) ≈ qπ(s, a)
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Type of approximations

D. Silver 2015
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Deep Q-Networks (DQN)

• DQN is based on the Q-Learning algorithm where the Q-Table is approximated by a 
(deep) neural network 

• DQN has two key enhancements w.r.t. the Q-learning algorithm to actually make it work: 

• Experience replay buffer: to reduce the instability caused by training on highly 
correlated sequential data, store transition tuples   buffer. Cut down 
correlations by randomly sampling the buffer for mini-batches of training data. 

• Freeze the target network: to address the instability caused by chasing a moving 
target, freeze the target network and only update it periodically with the latest 
parameters from the trained estimator. 

⟨s, a, r, s′ ⟩

Q-Learning at scale
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DQN in a figure

Experience 
Replay 
Buffer

Action (A) 
from ̂q

State (S’) 
Reward (R)

⟨s, a, r, s′ ⟩ ϕ(s), a
̂q(s, a; θ)

ℒ(s, a) = (r + γ max
a′ 

̂qT (ϕ(s′ ), a′ ; θ) − ̂q (ϕ(s), a; θ))
2

arg max
a

̂q(s, a; θ)
-greedyϵ

: the target network (old version of ) to alleviate the moving target problem̂qT ̂q
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DQN Algorithm
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DQN for ATARI
A classic example
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RL application in finance - Some examples

Part IV



RL in economics and finance

40

Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.



Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Koukorinis. 2018. Market Making via Reinforcement 
Learning. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems 

(AAMAS '18). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 434–442. 

Market Making via 
Reinforcement Learning 



Market Maker
Traders who profit from facilitating exchange in a particular asset and exploit their skills in executing trades 

Cartea, Jaimungal, & Penalva. Algorithmic and High-Frequency Trading 
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Profit & risks of a Market Maker

• Spread ( ) 

• Favorable market: 
increasing of the value of the 
owned financial instruments

Δp

Profits

• Non-zero inventory: bought 
financial instruments are never 
sold, or viceversa 

• Unfavorable market: decreasing 
of the value of the owned financial 
instruments 

Risks
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State space
The observable variables for the market maker
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•Market (bid/ask) spread ( ) 

•Mid-price move ( ) 

•Volatility 

•RSI 

Δs

Δm

• Inv(t): the amount of stock currently 
owned or owed by the agent 

• Effective values of the control 
parameters, , after going forward 
in the simulation 

θa,b

Agent/Market maker state Market/Environment state

PROBLEM: huge (continuous) state space  Tile coding→



Reward function

PnL REWARD: the money lost/gained through executions of the orders relative to 
the mid-price 

The quantity the market maker wants to maximise

45

agent’s quoted spread + inventory increment – dampening factor

Rt = Xa
t ⋅ [pa

t − mt] + Xb
t ⋅ [mt − pb

t ] + ItΔmt − ηD (It)

volume matched (executed) 
against the agent’s orders since 
t−1 in the order books 

mid-price

price



Action space
What the market maker can do

46

clear its inventory using a Market Order

Agent’s pricing strategy pa,b
t = mt +

1
2

θa,b
t Δst



Experimental setting

• Simulated data of a financial market via direct reconstruction of the limit order 
book from historical data (January — August 2010) of 10 securities from 4 different 
sectors  

• Tested RL models: 
• Q-learning 

• SARSA 

• R-learning 

• Variants of the previous approaches 

• Consolidated agent: SARSA + ad-hoc state representation
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Results - PnL
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Zihao Zhang, Stefan Zohren, Roberts Stephen, 2020. Deep Reinforcement Learning for Trading. 
The Journal of Financial Data Science. DOI: https://doi.org/10.3905/jfds.2020.1.030 

Deep Reinforcement 
Learning for trading



Trading

• Profit from buying & selling different financial instruments 

• Deals with probability never certainty 

• Trading vs Investing: holding period 

“This falls under the framework of optimal control theory and forms a classical sequential decision-making process.“

Goal of a trader (*) 
Maximize some expected utility (U)  
of final wealth  

Goal of RL 
Maximize the expected return G, 
i.e., the expected discounted 
cumulative rewards 

𝔼 [U (WT)] = 𝔼 U (W0 +
T

∑
t=1

δWt) 𝔼[G] = 𝔼 [
T

∑
k=t+1

γk−t−1Rk]
(*) Modern portfolio theory:  
- Arrow, K. J. “The Theory of Risk Aversion.” In Essays in the Theory of Risk-Bearing, pp. 90–120. Chicago: Markham, 1971. 
- Pratt, J. W. “Risk Aversion in the Small and in the Large.” In Uncertainty in Economics, pp. 59–79. Elsevier, 1978. 
- Ingersoll, J. E. Theory of Financial Decision Making, vol. 3. Lanham, MD; Rowman & Littlefield, 1987. 



Action space

• -1: maximally short position — SELL 

• 0: no holdings — DO NOTHING 

• +1: maximally long position — BUY 

• If :  no transaction costs 

• If : double transaction costs 

• In the continuous case the action can be anything in the range [-1, 1]

at = at+1

at = − at+1
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Reward function
Profits representing a risk-insensitive trader 
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Rt = At
σtgt

σt−1
(pt − pt−1) − βpt−1

σtgt

σt−1
At−1 −

σtgt

σt−2
At−2

ex ante volatility 
calculated using a 
weighted moving std 
with a 60-day window 
on the additive profit 

additive profit

cost rate: β=10-4 volatility targetprice

Transaction 
cost



State space

• Normalized close price series 

• Normalized returns over the past 1, 2, 3 and 12 months 

• MACD(*) indicator which "measures" the momentum, direction and duration of the 
trend of the price. 

• RSI indicator in [0, 100] with a look-back window of 30 days 
• ≤ 20: oversold 

• ≥ 80: overbought

53

(*) Baz, J., N. Granger, C. R. Harvey, N. Le Roux, and S. Rattray. “Dissecting Investment Strategies in the Cross Section and Time Series.” SSRN 2695101, 2015. 



Experimental setting
• Dataset: CLC Database (*2019) that ranges from 2005 to 2019 and consists of a 

variety (4) of asset classes 

• Function approximator: 2-layer LSTM with 64/32 units, and Leaky-RELU 

• RL techniques: DQN, A2C and PG 

• A separate model for each asset class is trained 

• The portfolio is equally distributed over all the asset classes

54

(*2019) CLC Database. Pinnacle Data Corp, 2019, https://pinnacle- data2.com/clc.html. 



Results - Cumulative trade return
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Results - Sharp ratio
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a.k.a. Take home message

Final Remarks



Conclusions

• RL is the ML paradigm for sequential decision making 

• RL highly differs from standard learning like supervised and unsupervised ML 

• RL represents a “natural” way of learning 

• RL shares many characteristics with Game Theory (used in mathematical 
economics) 

• RL shows high potential in financial applications and it is currently an hot topic
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In addition to the ones reported as footnotes
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https://arxiv.org/pdf/2003.10014.pdf


Thank you!
Questions are welcome!

Mirko Polato, PhD 
Deparment of Mathematics 
University of Padova 
mpolato@math.unipd.it
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The only stupid question is the one you were afraid to ask but never did. 
Richard Sutton

mailto:mpolato@math.unipd.it

