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Part |

Reinforcement Learning - A gentle introduction



Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—so as to maximise a
numerical reward signal.

* Agent-oriented learning—learning by interacting with an
environment to achieve a goal

* Learning by trial and error, with only delayed evaluative
feedback (reward)

REINFORCEMENT

. ¢ o . . . LEARNING
* Sequential decision making: noni.i.d data

* Agent’s actions affect the subsequent data it receives
(i.e., by acting it may change the environment)



Computer Science

Engineering

Reward

Psychology

David Silver 2015



RL success: Learning to walk

Haarnoja, T., Zhou, A., Ha, S., Tan, J., Tucker, G., & Levine, S. (2019). Learning to Walk via Deep Reinforcement Learning. ArXiv, abs/1812.11103.



RL success: Playing ATARI games
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Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou,
[; King, H.; Kumaran, D.; Wierstra, D.; Legg, S. & Hassabis, D. (2015), 'Human-level control through deep reinforcement learning’, Nature 518 (7540), 529--533.



RL success: Mastering Go, Chess, ...

Chess Shogi Go

s, o€
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AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
W:29.0% D:70.6%  L:0.4% W:84.2% D:2.2% L:13.6% W:68.9% L:31.1%
W:2.8% D:97.2% L:0.8% W:98.2% D:0.0%  L:1.8% W:53.7% L:46.3%
AZ wins AZ draws AZ loses AZ white O AZ black @

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M, Sifre, L., Kumaran, D., Graepel, T,, Lillicrap, T., Simonyan, K., & Hassabis, D. (2017). Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm. ArXiv, abs/1712.01815.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.;
Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T. & Hassabis, D. (2016), 'Mastering the Game of Go with Deep Neural Networks and Tree Search’, Nature §29 (7587), 484--489.
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The RL interface

a.k.a. the agent-environment interface

A

State,
Stimulus,
Situation

Reward, Action,
Gain, Payoff, Response,
Cost Control

Environment
(world)

* Environment may be unknown, nonlinear, stochastic and complex

R. Sutton 201§ @ NIPS

* Trajectory/History: sequence of Observation, Reward, Action...

e States are Markovian, i.e., the state is a sufficient statistic of the future



| Finite | Markov Decision Process

The foundational RL framework

A Markov Decision Process is a tuple (S,A, R, P, y)

* S - finite set of states The future is independent of

e A - finite set of actions the past given the present

* R - finite set of rewards (or a reward function) /

 P-transition probability matrix that describes a Markov dynamics

p(s|s,a) =P, ., =5'|S, =s,A =a)
« v € |0,1] - discount rate

10



Example of MDP: Student MDP

Facebook
R=-1

* Goal: Prepare for the exam and go @ Sleep |—o
to sleep

Facebook
R=-1

Quit
» Episodic MDP: each trajectory ends  &=¢

on the Sleep state (loop forever with
reward zero)

Sleep

@ R =410

A

» Example of episode :

Pub

C1—»FB—-Ci1—C2—-C3—C2-Sleep R=+1

0.4
0.2

0.4

D. Silver 2015
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Return (G)

The agent aims to maximize it

* Reward hypothesis: All goals can be described by the maximisation of the
expected cumulative reward

* Formally: the agent seeks to maximise the so-called expected return

* Return at time step ¢ is defined as

G, = R + 7R + 72Rt+3 T

— k

— Z Y Ry iq
k=0

= R + 7G4

12



Why the discount rate?

There are da bunch of reasons...

Mathematically convenient to discount rewards (i.e., bounded return)
Avoids infinite returns in cyclic Markov processes

[t encodes the uncertainty about the future

We can adjust y to our needs. E.g, in financial applications, immediate rewards may
earn more interest than delayed rewards

... however it is possible to use undiscounted reward (i.e. y = 1)

13



Policy (7)

The agent’s behaviour

Describes the agent’s behaviour

[t is a map from state to action

Deterministic policy: given the current state s, the agent performs a specific action
n(s) =a

Stochastic policy: given the current state s, the agent acts according to a
probability distribution over all possible actions

Vae A, n(als) =PA, =alS, =s) st Zn(a\s)=1

acA

14



Value Function

How good/bad is the situation?

* Used to evaluate the goodness/badness of states according to a policy

* Formally, the value function of a state s under a policy 7 is the expected return when starting

in s and following 7 thereafter

e State-value function

Vals) =k, [Gt |5 = S] — tr Z Y'Risirr | S, =5
k=0

e Action-value function

q(s,a) =k, [Gt |5 =5,4,= a] — Z 7th+k+1 | S, =s5,A,=a
k=0

15



Bellman Expectation Equation

Breaks down the value function into two parts: the immediate reward plus the discounted future values

* BEE for v, v,(5) = E, |G, | S, = 5] vr(s) 1 s

= Rt + 7G| S, = 5] /\
= R 1S ) 1S, = 5 frin) e

D m(a|$)g s, a)

aceA

Go(5,0) = B[Ry +70,(Siu 1, A )| S, = 5,A, = a]  anls.0) 5.
= R(s,a) +7 Y p(s’| 5, @)v,(s) " ,

s'es

» BEE for g,

16



Optimal Value Function

What is the best we can do?

* The optimal state-value function v.(s) is the maximum value function over all
policies
v:(s) = max v_(s)

v/

* The optimal action-value function g.(s, a) is the maximum action-value function
over all policies

q-(s, a) = max q,(s, a)
T

17



Optimal Policy

The final goal of the agent

» “Greedyfication”: given an optimal action-value function g, the optimal policy
can be computed by greedily selecting the action according to g

aceA

1 if a = arg max g.(s, a)
n(als) =

0 otherwise

* The optimal policy is deterministic

* There is always at least one deterministic optimal policy

18



Bellman Optimality Equation

This is what we want to solve

 BOE for v. vi(s) = max g, (s, a)

acA(s)
= max :Gt | S, =5,A, = a]

T
a

= max E :Rz+1 +yG, | S, =5,A, = a]

T
a

=max-[Rt+1+yv*( t+1) | S, =5,A, —a]

a

= max Zp (S’ | s, a) [R(s, a) + yvs (S’)]

* BOE for {+ q:(s,a) = Rz+1 + y max g (St+1,a’) | S, =5,A, =a

a’

= Zp "] s, a R(s,a) + y max g (s’,a’)
o

19



Part 1l

Tabular methods - The theoretical foundation of RL



Tabular methods

They use tables!

* When the underlying MDP is small, v_and g, can be stored in a table, called V-
Table and Q-Table, respectively

* Popular tabular methods:
* Monte-Carlo
 Temporal-Difference Learning
* Q-Learning

* SARSA

21



How does the agent learn?

a.k.a. Fantastic policies and how to find them

* GOAL: solving the Bellman Optimality Equation!
 PROBLEM: BOE is non-linear and it has no closed form solution (in general)

* SOLUTIONS:

* Known MDP: we know how the world works (unrealistic in practice!), thus we can
solve BOE using Dynamic Programming

* Unknown MDP: we can only experience the environment. Trial-and-error
based learning: the agent explore the environment and incrementally improves
its own policy

22



(Generalised) Policy Iteration

The dance of policy and value

* Two-step procedure until convergence (i.e., no

improvements) starting from an arbitrary policy: ‘/w//
1y

1. Policy evaluation: compute the gt —— i
value function(s) for all states according to M3 evauate
the current policy qu
2.Policy improvement: greedyfication T o
according to the current estimation of the &

value function Tl x R. Sutton 2015 @ NIPS

23
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k=2

Policy Iteration on Grid World

Reward: -1 for each step, O if the target state is reached
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What if we do not know the MDP?

Explore & Exploit

The agent has to learn from experience!

The agent acts in the environment and adjusts its policy on the basis of the
obtained rewards

Model-based: the agent use its experience to create a model of the environment
and then it simulates/plans over the learned model

Model-free: the agent does not care about building a model of the world, it simply
wants to know how to act in every situation!

25



Monte-Carlo control

One of the easiest control methods (for episodic MDPs*)

* Given an arbitrary policy z, and a Q-Table

randomly initialised. Repeat: d o

= Sample an episode by following the policy 7 o 6 5

= For each transition(s,, a, T Sy .1) update the VAN {w W u et
average return fromstoa,i.e.,
q(s,a) < average G from s with action a | . eRe a g% Rl ofke

/ N
/ \\ / X
/

= Update 7 according to g

* In the limit (# episodes — ©0), and ensuring that all actions in all states are selected infinitely
often 4(s, @) — gi(s, a)

26



Exploration vs Exploitation

We do not want to leave anything behind

* Pure greedyfication may lead to poor exploration of the environment with a
consequent risk to learn a suboptimal policy

* We need to ensure that all actions are taken in all states (infinitely often in the limit)

e c-greedy exploration
{arg max g.(a,s) with probability 1 — ¢
a, = =

any action with probability ¢

27



Temporal-Difference learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-difference (TD) learning.

* Model-free method that is based on value function updates similar to SGD

» Starting from an arbitrary value function, at every time step t (i.e., after each action
with transition (s, a, r, s’)) update the value-function as

TD Error
v(s) < v(s) + a [r + yv(s’) — v(s)] —

T

TD Target

Learning rate

* IDEA: improve our estimate of v (or g) using the new gathered experience

28



)-Learning: Off-policy TD control

One of the early breakthrough in RL

* Off-policy: The agent learns the optimal policy while acting according to an
“arbitrary” policy, i.e., the update rule does not depend on the used policy!

« Temporal-Difference based update (s S s’)

q(s,a) < qg(s,a)+a |r+ymaxqg(s,a’) — q(s,a)

* Needs exploration: e-greedy policy

29



()-Learning algorithm

Q-learning (off-policy TD control) for estimating 7 ~ ,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 81, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
S+ S

until S is terminal

30



Part 111

Approximated methods - RL @ scale



What'’s wrong with tabular solutions?

They do not scale!

* Real-world problems are too big for being stored in tables!
» Backgammon: 10?" states
* Chess: 107! states

e Go: 10179 states

* Moreover, we need more flexible ways to represent
the states!

32



Value Function Approximation

This is how we scale up

* Approximate the value function using a function approximator
(s, 0) = v_(s)
q(s,a,0) ~ g (s, a)
* The approximator can be whatever you want
* Linear combination of features
e Neural Networks

 Decision trees

33



Type of approximations

V(s, W) d(s,a,w) d(s,a,w) - q(s,a.,,w)

D. Silver 201

34



Deep Q-Networks (DQN)

(Q-Learning at scale

* DQON is based on the Q-Learning algorithm where the Q-Table is approximated by a
(deep) neural network

* DON has two key enhancements w.r.t. the Q-learning algorithm to actually make it work:

* Experience replay buffer: to reduce the instability caused by training on highly

correlated sequential data, store transition tuples (s, a, r, s") buffer. Cut down
correlations by randomly sampling the buffer for mini-batches of training data.

* Freeze the target network: to address the instability caused by chasing a moving
target, freeze the target network and only update it periodically with the latest
parameters from the trained estimator.

35



State (S)

e e —— —

8

Reward (R)

from g

|
|
|

Action (A) | -_—

e

DQN in afigure

(s,a,r,s)

Experience
Replay
Buffer

e-greedy
arg max g(s, a; 0)

L(s,a) = (I’

O O O
SO OO
r\ q(s,a; 0) C}
49,4 9,4 Oy
S e el

2
+ 7 max qr (45(5')» a’ 9) —q (¢(S)’ @, ‘9>>

g7 the target network (old version of @) to alleviate the moving target problem
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DON Algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
[nitialise sequence s; = {1} and preprocessed sequenced ¢; = ¢(s1)
fort=1,7T do
With probability € select a random action a;
otherwise select a; = max, Q*(o(s¢), a;0)
Execute action a; in emulator and observe reward r; and image ;4
Set s;411 = S4, a4, 441 and preprocess ¢y 1 = @(Sp+1)
Store transition (¢y, as, 74, ¢y411) iIn D
Sample random minibatch of transitions (¢;,a;,7;, @;4+;) from D

Sty _ 4 T for terminal ¢; 4
Y = r; +ymax, Q(¢;i1,a’;0) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for

end for

37
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PartlV

RL application in finance - Some examples
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Number of citations per year
[ —
o on

(93

Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey,” FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

RI.1n economics and finance

Approach > citations @ citations per year
Critic-only approach 651 36
Actor-only approah 601 60
Actor-critic approach 122 31
Moodyand
Saffell (2001)
Dempster
et al. (2001)
Moody et
al. (1998b)
Neuneier
(1996) Chan and
Moody Neuneier Shelton
and Wu (1998) (2001)
(1997)
Dempster and
Romahi (2002)
1993 1998

® Critic-only approach

(2003)

Nevmyvaka et al.
(2006)

Dempster
and
Leemans
(2006)

(2006)

2003

® Actor-only-approach
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Lee et al.

(2007)
\ 4

’Jangmin et al.

Tan et al.

(2011)

Chenetal.  DBekiros
(2007) (2010)
2008
Actor-critic approach

Deng et
al. (2017)

-

Deng et al.

(2015) '

Eilers et al.

(2014) .

Jian et al.

(2017) o

Yearof 2018
publication

2013



Market Making via
Reinforcement Learning

Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Koukorinis. 2018. Market Making via Reinforcement
Learning. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS "18). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 434-442.




Market Maker

Traders who profit from facilitating exchange in a particular asset and exploit their skills in executing trades
Cartea, Jaimungal, & Penalva. Algorithmic and High-Frequency Trading

MARKET

42



Profit & risks of a Market Maker

t [

Profits Risks

» Spread (Ap) * Non-zero inventory: bought
financial instruments are never

 Favorable market: sold. or viceversa

increasing of the value of the

1 * Unfavorable market: decreasing
owned financial instruments

of the value of the owned financial
Instruments

43



State space

The observable variables for the market maker

Agent/Market maker state Market/Environment state

- Inv(t): the amount of stock currently -Market (bid/ask) spread (As)

owned or owed by the agent
-Mid-price move (Am)

- Effective values of the control
parameters, 6, ,, after going forward -‘Volatility

in the simulation
-RSI

PROBLEM: huge (continuous) state space — Tile coding

44



Reward function

The quantity the market maker wants to maximise

PnL REWARD: the money lost/gained through executions of the orders relative to
the mid-price

agent’s quoted spread + inventory increment - dampening factor

price

R, =X - [pta_mt] +th ' [mt_ptb] + L, Am,|—nD (It)

volume matched (executed)
against the agent’s orders since mid-price
t—1in the order books

45



Action space

What the market maker can do

ActionID 0 1 2 3 4|5 6 |7 8

Ask() 1 2 3 4 5|1 3|2 5
Bid (6,) 1 2 3 4 5|3 1|5 2

Action 9 MO with Size,, = — Inv(t;) clear its inventory using a Market Order

Agent’s pricing strategy pt“’b = m, + Eé’f’b As,

46



Experimental setting

 Simulated data of a iinancial market via direct reconstruction of the limit order

book from historical data (January — August 2010) of 10 securities from 4 different
sectors

» Tested RL models:
* (Q-learning
* SARSA
* R-learning
* Variants of the previous approaches

* Consolidated agent: SARSA + ad-hoc state representation

47



Results - PnL

CRDI.MI GASI.MI GSK.L HSBA.L ING.AS LGEN.L LSE.L NOK1V.HE SAN. MC VOD. L
Double Q—leaming —5.04 + 83.90 5.46 + 59.03 6.22 + 59.17 5.59 + 159.38 58.75 + 394.15 2.26 = 66.53 16.49 + 43.10 —2.68 + 19.35 5.65 = 259.06 7.50 £ 42.50
Expected SARSA 0.09 + 0.58 3.79+£35.64  —9.96+ 102.85  25.20 + 209.33 6.07 + 432.89 2.92 + 37.01 6.79 + 27.46  —3.26 + 25.60 32.28 £ 272.88  15.18 + 84.86
R-learning 5.48 + 25.73 —3.57 + 54.79 12.45 +£33.95  —22.97 + 211.88 —244.20 + 306.05 —3.59 + 137.44 8.31 +23.50  —0.51 + 3.22 8.31 £ 273.47  32.94 + 109.84
Double R-leaming 19.79 4+ 85.46 —-1.17 + 29.49 21.07 £112.17 —-14.80 + 108.74 5.33 + 209.34 —1.40 %+ 55.59 6.06 + 25.19 2.70 + 15.40 32.21 + 238.29 25.28 + 92.46
On-policy R-learning 0.00 + 0.00 4.59 + 17.27 14.18 + 32.30 9.56 + 30.40 18.91 + 84.43 —1.14 + 40.68 5.46 + 12.54 0.18 + 5.52 25.14 + 143.25  16.30 + 32.69
200000
0.5 W e - oan o - e ’ ‘. u .‘--M —“-A Sy, g N SRR M
- - = 100000 Wl
— 0.0 = lh = —
Q. J O
@ = 0d
% -05 £
& O -100000
a -1.0 ~—— Basic
.E ~200000 Consolidated
g -1.5 10000
o w
- =20 . =
- -~ Basic S 2000
8 25 —— Asymmetric dampening g o fITE
= —— Full-state = I
. Q5000
-3.0 Consolidated =
0 200 400 600 800 1000 ~10000

Episode [days]
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Deep Reinforcement
Learning for trading

Zihao Zhang, Stefan Zohren, Roberts Stephen, 2020. Deep Reinforcement Learning for Trading.
The Journal of Financial Data Science. DOI: https://doi.org/10.3905/jfds.2020.1.030



Trading

“This falls under the framework of optimal control theory and forms a classical sequential decision-making process.”

* Profit from buying & selling different financial instruments
* Deals with probability never certainty

* Trading vs Investing: holding period

Goal of a trader (*) Goal of RL
Maximize some expected utility (U) Maximize the expected return G,
of final wealth i.e., the expected discounted
cumulative rewards
_ _ T T
S \U (W) | =E | U Wo+ ) oW, [Gl=E| ) 'R,
=1 k=t+1

(*) Modern portfolio theory:

- Arrow, K. J. “The Theory of Risk Aversion.” In Essays in the Theory of Risk-Bearing, pp. 90-120. Chicago: Markham, 1971.
- Pratt, J. W. “Risk Aversion in the Small and in the Large.” In Uncertainty in Economics, pp. 59-79. Elsevier, 1978.

- Ingersoll, J. E. Theory of Financial Decision Making, vol. 3. Lanham, MD; Rowman & Littlefield, 1987.



Action space

-1: maximally short position — SELL
0: no holdings — DO NOTHING

+1: maximally long position — BUY
If a, = a,,{: no transaction coOsts

If a, = — a,, ,: double transaction costs

In the continuous case the action can be anything in the range [-1, 1]

51



Reward function

Profits representing a risk-insensitive trader

cost rate: f=10-4 price volatility target
O O O
tgt tgt tgt
R, = A, (pt — pt—l) — PPy A1 — Ao
Or—1 Or—1 )
additive profit ex ante volatility

calculated using a
weighted moving std
with a 60-day window
on the additive profit

Transaction
cost

52



State space

* Normalized close price series
* Normalized returns over the past 1, 2, 3 and 12 months

« MACD(*) indicator which "measures" the momentum, direction and duration of the
trend of the price.

RSl indicator in [0, 100] with a look-back window of 30 days
* <20:o0versold

* >380: overbought

(*) Baz, J., N. Granger, C. R. Harvey, N. Le Roux, and S. Rattray. “Dissecting Investment Strategies in the Cross Section and Time Series.” SSRN 2695101, 2015.
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Experimental setting

* Dataset: CLC Database (*2019) that ranges from 2005 to 2019 and consists of a
variety (4) of asset classes

2005 2011 2019

TRAININGSET TESTSET

* Function approximator: 2-layer LSTM with 64/32 units, and Leaky-RELU
* RL techniques: DQN, A2C and PG
* A separate model for each asset class is trained

* The portfolio is equally distributed over all the asset classes

(*2019) CLC Database. Pinnacle Data Corp, 2019, https:/pinnacle- dataz.com/clc.html.
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Results - Cumulative trade return
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Sharpe Ratio
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Final Remarks



Conclusions

RL is the ML paradigm for sequential decision making
RL highly differs from standard learning like supervised and unsupervised ML
RL represents a “natural” way of learning

RL shares many characteristics with Game Theory (used in mathematical
€Conomics)

RL shows high potential in financial applications and it is currently an hot topic
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Thank you!

Questions are welcomel!

The only stupid question is the one you were afraid to ask but never did.
Richard Sutton

Mirko Polato, PhD
Deparment of Mathematics
University of Padova

mpolato@math.unipd.it
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