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Learning from different perspectives



DISCRIMINATIVE MODELS

SUPPORT VECTOR 
MACHINE

MULTI-LAYER 
PERCEPTRON

DECISION TREES

o Learn the boundary between classes

o Directly learn the conditional predictive distribution, 𝑃(𝑦|𝒙)
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GENERATIVE MODELS

o Can generate new data instances

o Capture the joint probability 𝑃 𝒙, 𝑦 or just 𝑃(𝒙) if there are no labels

o Generative classifiers make the prediction by using Bayes rules

𝑃 𝑦 𝒙 = ! 𝒙,$
! 𝒙

= ! 𝒙|$ ! $
! 𝒙

o Naïve Bayes is an example of generative model:

• Given y, you can draw a new example by sampling from 𝑃(𝑥!|𝑦)
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DISCRIMINATIVE vs. GENERATIVE
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DISCRIMINATIVE vs. GENERATIVE
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Feature Discriminative Generative

Support Unlabeled data No Yes

Can generate data No Yes

Can perform classification Yes Yes

Classification performance Best Very good

Computational complexity Medium/High High

Assumptions Some Many

Outlier detection No Yes



VARIATIONAL 
AUTOENCODERS
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From Auto-Encoders to Variational Auto-Encoders



AUTO-ENCODERS (AE)

o Vanilla auto-encoders learn to represent (i.e., encode) the input in a 
lower dimensional space, while keeping the ability to reconstruct it
(e.g., decode) as accurately as possible

o The code is said to be the latent representation of the input
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AEs AS GENERATIVE MODELS
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AEs AS GENERATIVE MODELS, WHY 
NOT?

Irregular latent spaces make autoencoders not ideal for new content generation!
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AE’s LATENT SPACE ON MNIST

o MNIST: dataset of handwritten digits

o GOOD: different digits are mapped on 
‘different’ latent space regions

o BAD: latent space is not continuous

o What if we pick a latent representation
outside the known regions?
à The deconding would fail!! 
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VARIATIONAL AUTO-ENCODERS 
(VAE)

o AE regularized to avoid overfitting
o AE regularized to ensure good properties of the latent space

è enables the generative process
o Encode inputs as a distribution over the latent space
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GOOD LATENT SPACE PROPERTIES

o Continuity: close points in the latent space should remain
(sufficiently) close also in the input space when decoded

o Completeness: for a given distribution, a point sampled from the 
latent space should give “meaningful” content once decoded
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VAE ARCHITECTURE
o The encoded distributions are (tipically) chosen to be standard gaussian

o The encoder outputs the distribution means and variances, separately

o The decoding is performed on a code (z) sampled from the latent distribution
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VAE w/o REGULARIZATION

Encoding to distributions instead of points is not enough!

In terms of pure reconstruction error a not regularized VAE can:
o Return distributions with tiny variances à no completness
o Return distributions with very distant means à no continuity
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VAE’s REGULARIZED LOSS

LVAE = reconstruction loss + KL loss
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Standard AE loss: computes 
how far is the output w.r.t. the 
input 

Kulback-Leibler divergence: Measures the 
difference between the latent factors' 
distribution and the target ones (usually 
standard Gaussian)

Force the covariance matrix 
being identity-like preventing 
punctual distribution

Force the means to be close to 0 
preventing of having far apart 
distributions



VAE ARCHITECTURE
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VAE AS A NEURAL NETWORK

Sampling?!

The sampling operation does not 
allow the error to be backpropagate!
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Parameters' sharing



“REPARAMETRIZATION” TRICK
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VAE FULL NN ARCHITECTURE
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VAE’s LATENT SPACE ON MNIST

o MNIST: dataset of handwritten digits

o GOOD: different digits are mapped on 
‘different’ (but somewhat overlapping) 
latent space regions

o GOOD: latent space is much more 
continuous and complete w.r.t. AE’s one

o Points in "middle earth" regions are 
decoded to blended representations!
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GENERATIVE ADVERSARIAL 
NETWORKS
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Game theory meets generative learning

“GAN is the most interesting idea in the last 10 years in Machine Learning”
Yann LeCun



GENERATIVE PROCESS

What is the idea behind a generic generative process?

(pseudo) random 
variable

Q: Is this magic?? A: The machine generates (through 
a function) random variables as the 
result of a function applied to 
uniform random variables.
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EXAMPLE: "Complex" random variable generation



GENERATIVE PROCESS
Q: What if we want to sample a random number from the 

standard Gaussian distribution?
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A: Inverse transform method

𝑓: 𝑥 ∼ 𝑈 0,1 → 𝑓 𝑥 ∼ 𝑁(0,1)



GENERATE REALLY COMPLEX 
RANDOM VARIABLES

Q: What if we want to generate dog pictures?
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Generate new vectors following the “dog probability 
distribution” over the N dimensional vector space. 

Rephrase

Very complex 
distribution

Even if it exists - We don’t 
know how to express it 
explicitly



GENERATIVE NEURAL NETWORK
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In general, the functional f is hard to define à Lets use a neural network!!



GENERATIVE MATCHING NETWORK (GMN)
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GAN: GENERATIVE ADVERSARIAL 
NETWORK
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GAN: TRAINING OVERVIEW
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GMN vs GAM: IDEAL LEARNING
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GMN GAN



GAN ARCHITECTURE

G D
real

fake

noise

training instance 

generated

min
!
E𝐳[log(1 − 𝐷 𝐺 𝒛 ] max

#
𝐸𝒙[log(𝐷(𝒙))]

𝒛 x

x

min
!
max
#

𝐸𝒙 log(𝐷(𝒙)) + E𝐳[log(1 − 𝐷 𝐺 𝒛 ]
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GAN: TRAINING EXAMPLES
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GAN to draw samples from the standard 
normal distribution N(0, 1)

GAN's epochs on a 2D generative task



WHY DO GANs ARE HARD TO 
TRAIN?
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o Very delicate balance between discriminator and generator

o Hyper-parameters tuning

• Mode collapse

• Non-convergence / unstable gradient

Overspecialized generator



WHY GANs ARE (GENERALLY) PREFERRED 
TO VAEs FOR IMAGE GENERATION?
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APPLICATIONS
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GANs and VAEs in action!



GAN: DATA AUGMENTATION 
(GENERATION)
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A B C D

Quiz time!



GAN: STYLE TRANSFER
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GAN: STYLE TRANSFER
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GAN: STYLE TRANSFER
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GAN: SUPER RESOLUTION
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GAN: CONDITIONAL SYNTHESIS
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CF-GAN: COLLABORATIVE FILTERING
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VAE: SENTENCE INTERPOLATION

M.Polato – (Deep) Generative models 44



VAE: MOTION FORECASTING IN 
STATIC IMAGES
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VAE: COLLABORATIVE FILTERING
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CONDITIONED VAE
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C-VAE Architecture Latent space visualization through PCA
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