(DEEP) GENERATIVE MODELS

Variational Auto-Encoders and Generative Adversarial Networks

Mirko Polato, PhD 13.01.2021

GENERATIVE vs. DISCRIMINATIVE

Learning from different perspectives

01

02

VARIATIONAL AUTOENCODERS

From Auto-Encoders to Variational Auto-Encoders

TABLE OF CONTENTS

04 Game

GENERATIVE ADVERSARIAL NETWORKS

Game theory meets generative learning

05

APPLICATIONS

GANs and VAEs in action

01 GENERATIVE vs. DISCRIMINATIVE

Learning from different perspectives

DISCRIMINATIVE MODELS

- o Learn the **boundary** between classes
- Directly learn the conditional predictive distribution, P(y|x)

GENERATIVE MODELS

- o Can generate new data instances
- Capture the joint probability P(x, y) or just P(x) if there are no labels
- o Generative classifiers make the prediction by using Bayes rules

$$P(y|\mathbf{x}) = \frac{P(x,y)}{P(x)} = \frac{P(x|y)P(y)}{P(x)}$$

- Naïve Bayes is an example of generative model:
 - Given y, you can draw a new example by sampling from $P(x_i|y)$

DISCRIMINATIVE vs. GENERATIVE

	Discriminative model	Generative model		
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$		
What's learned	Decision boundary	Probability distributions of the data		
Illustration				

DISCRIMINATIVE vs. GENERATIVE

Feature	Discriminative	Generative
Support Unlabeled data	No	Yes
Can generate data	No	Yes
Can perform classification	Yes	Yes
Classification performance	Best	Very good
Computational complexity	Medium/High	High
Assumptions	Some	Many
Outlier detection	No	Yes

UZ VARIATIONAL AUTOENCODERS

From Auto-Encoders to Variational Auto-Encoders

AUTO-ENCODERS (AE)

- Vanilla auto-encoders learn to represent (i.e., encode) the input in a lower dimensional space, while keeping the ability to reconstruct it (e.g., decode) as accurately as possible
- The **code** is said to be the **latent representation** of the input

$$p_{x} = || \mathbf{x} \cdot \hat{\mathbf{x}} ||^{2} = || \mathbf{x} \cdot \mathbf{d}(\mathbf{z}) ||^{2} = || \mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x})) ||^{2}$$

M.Polato – (Deep) Generative models

Irregular latent spaces make autoencoders not ideal for new content generation!

AE's LATENT SPACE ON MNIST

- o MNIST: dataset of handwritten digits
- **GOOD**: different digits are mapped on 'different' latent space regions
- BAD: latent space is not continuous
- o What if we pick a latent representation outside the known regions?
 → The deconding would fail!!

VARIATIONAL AUTO-ENCODERS (VAE)

- o AE regularized to avoid overfitting
- AE regularized to ensure good properties of the latent space

 enables the generative process
- o Encode inputs as a distribution over the latent space

GOOD LATENT SPACE PROPERTIES

- **Continuity:** close points in the latent space should remain (sufficiently) close also in the input space when decoded
- **Completeness:** for a given distribution, a point sampled from the latent space should give "meaningful" content once decoded

VAE ARCHITECTURE

- o The encoded distributions are (tipically) chosen to be standard gaussian
- o The encoder outputs the distribution means and variances, separately
- The decoding is performed on a code (z) **sampled** from the latent distribution

VAE w/o REGULARIZATION

Encoding to distributions instead of points is not enough!

In terms of pure reconstruction error a *not regularized* VAE can:
 o Return distributions with tiny variances → no completness
 o Return distributions with very distant means → no continuity

VAE's REGULARIZED LOSS

L_{VAE} = reconstruction loss + KL loss

Standard AE loss: computes how far is the output w.r.t. the input **Kulback-Leibler divergence**: Measures the difference between the latent factors' distribution and the target ones (usually standard Gaussian)

Force the covariance matrix being identity-like preventing punctual distribution Force the means to be close to 0 preventing of having far apart distributions

loss = $||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$

"REPARAMETRIZATION" TRICK

---- backpropagation is not possible due to sampling

sampling without reparametrisation trick

sampling with reparametrisation trick

VAE FULL NN ARCHITECTURE

VAE's LATENT SPACE ON MNIST

- o MNIST: dataset of handwritten digits
- GOOD: different digits are mapped on 'different' (but somewhat overlapping) latent space regions
- **GOOD**: latent space is much more continuous and complete w.r.t. AE's one
- Points in "middle earth" regions are decoded to blended representations!

GENERATIVE ADVERSARIAL NETWORKS

Game theory meets generative learning

UA

"GAN is the most interesting idea in the last 10 years in Machine Learning" Yann LeCun

GENERATIVE PROCESS

What is the idea behind a generic generative process?

EXAMPLE: "Complex" random variable generation

(pseudo) random variable

Q: Is this magic??

A: The machine generates (through a function) random variables as the result of a function applied to uniform random variables.

GENERATIVE PROCESS

Q: What if we want to sample a random number from the standard Gaussian distribution?

A: Inverse transform method

 $f: x \sim U(0,1) \rightarrow f(x) \sim N(0,1)$

GENERATE REALLY COMPLEX RANDOM VARIABLES

Q: What if we want to generate dog pictures?

Rephrase

Generate new vectors following the "dog probability distribution" over the N dimensional vector space.

Very complex distribution

Even if it exists - We don't know how to express it explicitly

GENERATIVE NEURAL NETWORK

In general, the functional f is hard to define \rightarrow Lets use a **neural network**!!

GENERATIVE MATCHING NETWORK (GMN)

GAN: GENERATIVE ADVERSARIAL NETWORK

GAN: TRAINING OVERVIEW

Input random variables. The generative network is trained to **maximise** the final classification error.

The generated distribution and the true distribution are not compared directly. The discriminative network is trained to **minimise** the final classification error.

The classification error is the basis metric for the training of both networks.

GMN vs GAM: IDEAL LEARNING

GAN

M.Polato – (Deep) Generative models

GAN: TRAINING EXAMPLES

WHY DO GANS ARE HARD TO TRAIN?

- Very delicate balance between discriminator and generator
 - Mode collapse

• Non-convergence / unstable gradient

Overspecialized generator

Hyper-parameters tuning

WHY GANS ARE (GENERALLY) PREFERRED TO VAES FOR IMAGE GENERATION?

Input

VAE reconstruction

04 APPLICATIONS

GANs and VAEs in action!

GAN: DATA AUGMENTATION (GENERATION)

Quiz time!

M.Polato – (Deep) Generative models

GAN: STYLE TRANSFER

GAN: STYLE TRANSFER

GAN: STYLE TRANSFER

OUTPUT

INPUT

pix2pix process

THE REAL ETT.

OUTPUT

120

GAN: SUPER RESOLUTION

LG Image

Generated Image

M.Polato – (Deep) Generative models

GAN: CONDITIONAL SYNTHESIS

Baseline method Our result

Original

This small bird has a blue crown and white belly

A small yellow bird has grey wings, and a black bill.

A small brown bird with a brown crown has a white belly.

This black bird has no other colors with a short bill.

An orange bird with green wings and blue head.

A black bird with a red head.

This particular bird with a red head and breast and features grey wing

CF-GAN: COLLABORATIVE FILTERING

VAE: SENTENCE INTERPOLATION

"i want to talk to you."
"i want to be with you."
"i do n't want to be with you."
i do n't want to be with you.
she did n't want to be with him.

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn . there is no one else in the world .
there is no one else in sight .
they were the only ones who mattered .
they were the only ones left .
he had to be with me .
she had to be with him .
i had to do this .
i wanted to kill him .
i started to cry .
i turned to him .

VAE: MOTION FORECASTING IN STATIC IMAGES

VAE: COLLABORATIVE FILTERING

(a) ML-20M

Recall@20	Recall@50	NDCG@100
0.395	0.537	0.426
0.387	0.524	0.419
0.360	0.498	0.386
0.370	0.495	0.401
0.391	0.523	0.418
	Recall@20 0.395 0.387 0.360 0.370 0.391	Recall@20 Recall@50 0.395 0.537 0.387 0.524 0.360 0.498 0.370 0.495 0.391 0.523

(b) Netflix

	Recall@20	Recall@50	NDCG@100
Mult-VAE ^{PR}	0.351	0.444	0.386
Mult-dae	0.344	0.438	0.380
WMF	0.316	0.404	0.351
SLIM	0.347	0.428	0.379
CDAE	0.343	0.428	0.376

CONDITIONED VAE

C-VAE Architecture

Latent space visualization through PCA

References

- PAPER GAN: <u>https://arxiv.org/pdf/1406.2661.pdf</u>
- PAPER VAE: <u>https://arxiv.org/pdf/1312.6114.pdf</u>
- o PAPER VAE/GAN: https://arxiv.org/pdf/1512.09300.pdf
- PAPER C-VAE: <u>https://dl.acm.org/doi/abs/10.1145/3386392.3399305</u>
- o Tutorial on GAN:

https://towardsdatascience.com/comprehensive-introduction-to-turing-learning-and-gans-part-1-81f6d02e644d https://towardsdatascience.com/comprehensive-introduction-to-turing-learning-and-gans-part-2-fd8e4a70775 https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-deep-generative-models-985cf15936ea

- o Tutorial on VAE: <u>https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368</u>
- Interesting series of articles about VAE:

https://towardsdatascience.com/the-variational-autoencoder-as-a-two-player-game-part-i-4c3737f0987b

https://towardsdatascience.com/the-variational-autoencoder-as-a-two-player-game-part-ii-b80d48512f46 https://towardsdatascience.com/the-variational-autoencoder-as-a-two-player-game-part-iii-d8d56c301600

0 Why it is so hard to train GANs? https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

THANKS

Does anyone have any questions?

Mirko Polato, PhD mpolato@math.unipd.it

CREDITS: This presentation template was created by **Slidesgo**.