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GENERATIVE vs.
DISCRIMINATIVE

Learning from different perspectives



DISCRIMINATIVE MODELS

o Learn the boundary between classes

o Directly learn the conditional predictive distribution, P(y|x)
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GENERATIVE MODELS

o (an generate new data instances
o Capture the joint probability P(x, y) or just P(x) if there are no labels

o Generative classifiers make the prediction by using Bayes rules

__ P(xy) _ P(x|y)P(y)

o Naive Bayes is an example of generative model:

Giveny, you can draw a new example by sampling from P(x;|y)
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DISCRIMINATIVE vs.

Discriminative model
Goal Directly estimate P(y|z)

What's learned Decision boundary

Illustration L
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GENERATIVE

Generative model

Estimate P(z|y) to then deduce P(y|z)

Probability distributions of the data




DISCRIMINATIVE vs. GENERATIVE

Discriminative Generative

Support Unlabeled data No Yes
Can generate data No Yes
Can perform classification Yes Yes
Classification performance Best Very good
Computational complexity Medium/High High
Assumptions Some Many
Outlier detection No Yes
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VARIATIONAL
AUTOENCODERS

From Auto-Encoders to Variational Auto-Encoders



AUTO-ENCODERS (AE)

o Vanilla auto-encoders learn to represent (i.e., encode) the input in a
lower dimensional space, while keeping the ability to reconstruct it
(e.g., decode) as accurately as possible

o The codeis said to be the latent representation of the input

neural network neural network
encoder decoder

loss = |[x-%|P = [|x-d() | = |x-dle(x))|?
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AEs AS GENERATIVE MODELS

encoder

encoded vector
(in latent space)

—
training .
process ,E‘
—
input
generation
process

sampler
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sampled vector
(from latent space)

d

decoder -

decoded content

(reconstructed input /
generated content)
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AEs AS GENERATIVE MODELS, WHY
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the autoencoder
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encoded data can be decoded
without loss if the autoencoder
has enough degrees of freedom

O

without explicit regularisation,
some points of the latent space
are “meaningless” once decoded

Irregular latent spaces make autoencoders not ideal for new content generation!
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AE's LATENT SPACE ON MNIST

o MNIST: dataset of handwritten digits .

o GOOD: different digits are mapped on
'different’ latent space regions o % T

o BAD: latent space is not continuous

o What if we pick a latent representation

outside the known regions?
- The deconding would fail!!
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VARIATIONAL AUTO-ENCODERS

(VAE)

o AE regularized to avoid overfitting

o AE regularized to ensure good properties of the latent space
=» enables the generative process

o Encode inputs as a distribution over the latent space

latent input
2 input representation reconstruction
simple
autoencoders x z=-e(x) d(z)
latent sampled latent input
- input distribution representation reconstruction
variational
autoencoders X p(z|x) z~ p(z|x) d(z)
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GOOD LATENT SPACE PROPERTIES

o Continuity: close points in the latent space should remain
(sufficiently) close also in the input space when decoded

o Completeness: for a given distribution, a point sampled from the
latent space should give "meaningful” content once decoded

/ space -
omce dooingless
ti;""“w“ ’
&
stmilar
syt )
O POW‘S toat are close
the latent space are
Slw\-dkr once decoded
irregular latent space x « regular latent space
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VAE ARCHITECTURE

o The encoded distributions are (tipically) chosen to be standard gaussian
o The encoder outputs the distribution means and variances, separately

o The decoding is performed on a code (z) sampled from the latent distribution

neural network

neural network
decoder

| encoder

X X =d(z)
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VAE w/o0 REGULARIZATION

Encoding to distributions instead of points is not enough!

In terms of pure reconstruction error a not regularized VAE can:
o Return distributions with tiny variances - no completness
o Return distributions with very distant means = no continuity

what can happen without regularisation x V what we want to obtain with regularisation
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VAE's REGULARIZED LOSS

Lyae = reconstruction loss + KL loss

e \

Standard AE loss: computes Kulback-Leibler divergence: Measures the
how far is the output w.r.t. the difference between the latent factors'
input distribution and the target ones (usually

standard Gaussian)

/ Force the means to be close to O

Force the covariance matrix preventing of having far apart
being identity-like preventing e s
punctual distribution
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VAE ARCHITECTURE

neural network M, pling ‘ neural network
decoder

encoder

loss = ||x-X]|* + KLLN(p o ), N(©,)] = ||x-d(2)|* + KL[N(pi o ), N(O, )]
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VAE AS A NEURAL NETWORK

Parameters' sharing

M.Polato - (Deep) Generative models

N

Sampling?! f

o =h(x) =h,(h,(x))

The sampling operation does not
allow the error to be backpropagate!




"“REPARAMETRIZATION" TRICK

no problem for backpropagation ~ se==--- backpropagation is not possible due to sampling

senpling prmesls o o backpropagakion. is required

and then training s
______ — / "o’
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sampling without reparametrisation trick sampling with reparametrisation trick
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VAE FULL NN ARCHITECTURE

N(o, 1) e

loss = C|| ;sé,-x/‘||2 + KL[N(p ,0),N(O,D] = C|| x-f(2) ||* + KL[ N(g(x) , h(x)), N(O, 1) ]
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VAE's LATENT SPACE ON MNIST

o MNIST: dataset of handwritten digits .o

o GOOD: different digits are mapped on | 3 :ﬁfﬁ«;w,‘.
'different’ (but somewhat overlapping) oo L G
latent space regions ; : 3RS

o GOOD: latent space is much more
continuous and complete w.r.t. AE's one

o Points in "middle earth" regions are
decoded to blended representations!
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GENERATIVE ADVERSARIAL
NETWORKS

Game theory meets generative learning

“GAN is the most interesting idea in the last 10 years in Machine Learning’
Yann LeCun



GENERATIVE PROCESS

What is the idea behind a generic generative process?

EXAMPLE: "Complex" random variable generation

-

: : A: The machine generates (through
: 27
BB TS MR a function) random variables as the
result of a function applied to
uniform random variables.

(pseudo) random
variable
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GENERATIVE PROCESS

Q: What if we want to sample a random number from the
standard Gaussian distribution?

A: Inverse transform method

fix~U0,1) = f(x) ~ N(©,1)

04
L /\
o

3 2 -3 1] 1 2 3
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GENERATE REALLY COMPLEX
RANDOM VARIABLES

0Q: What if we want to generate dog pictures?

\Rephrase

Generate new vectors following the “dog probability
distribution” over the N dimensional vector space.

**,.".'

Very complex 3‘ | Even if it exists - We d'on’t
distribution , g know how to express it

NI explicitly
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GENERATIVE NEURAL NETWORK

In general, the functional f is hard to define - Lets use a neural network!!

SEEMINGLY IMPOSSIBLE PROBLEM

GENERATIVE
NETWORK
—) :
Input random variable The generative network Output random variable The output of the
(drawn from a simple transforms the simple (should follow the targeted generative network
distribution, for random variable into distribution, after training once reshaped.
example uniform). a more complex one. the generative network).

M.Polato - (Deep) Generative models 27



GENERATIVE MATCHING NETWORK (GMN)

Forward transform of the
initial random variables to

generate data

GENERATIVE
NETWORK

Backpropagation of
the matching error to
train the network

-
s

\ 4

Input random variables
(drawn from a uniform).
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Generative network
to be trained.

The generated distribution is compared
to the true distribution and the “matching error”
is backpropagated to train the network.
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GAN: GENERATIVE ADVERSARIAL
NETWORK

D: Detective

>q S0
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G: Generator (Forger) l: Input for Generator
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GAN: TRAINING OVERVIEW

Il Forward propagation (generation and classification) Bl Backward propagation (adversarial training)
o © o ©
© 5 o ° © 4, o ©
0 0 o o ©o 0o _ ©°
’ Q eo (] (o] * * %’ —eof (o] T ~
GENERATIVE o @ o 0 g0 DISCRIMINATIVE o @’ ° 279 o0 °
NETWORK ® ° NETWORK 4 °
< | 00 = * | 9%
.- O
Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.
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GMN vs GAM: IDEAL LEARNING

08
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GMN
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GAN ARCHITECTURE

noise generated ‘
z b ¢

LIT TP PTTT]

training instance
X

mGin E,[log(1 — D(G(Z))] 1ED Ey[log(D(x))]

real

I —

fake

\
D
-

mGin max E,[log(D(x))] + E,[log(1 — D(G(Z))]

M.Polato - (Deep) Generative models

32



GAN: TRAINING EXAMPLES
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GAN's epochs on a 2D generative task
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WHY DO GANs AREHARD TO

TRAIN?
o Very delicate balance between discriminator and generator
* Mode collapse 4 . : | A
€v o , ©

 Non-convergence / unstable gradient

Overspecialized generator
o Hyper-parameters tuning

M.Polato - (Deep) Generative models
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WHY GANs ARE (GENERALLY) PREFERRED
TO VAEs FOR IMAGE GENERATION?

VAE reconstruction

M.Polato - (Dee enerative models
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APPLICATIONS

GANs and VAEs in action!



GAN: DATA AUGMENTATION
(GENERATION)
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GAN: STYLE TRANSFER

Output

M.Polato - (Deep) Generative models
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GAN: STYLE TRANSFER

Qutput Input Output Input

e e e

orange — apple

Output
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GAN: STYLE TRANSFER

INPUT OUTPUT

INPUT

INPUT

piX2pix

- Hem

OUTPUT

OUTPUT

Pix2pix
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GAN: SUPER RESOLUTION

LG Image Generated Image

M.Polato - (Deep) Generative models
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GAN: CONDITIONAL SYNTHESIS

Baseline method Our result

Original
This small bird has a blue crown

and white belly

A small yellow bird has grey
wings, and a black bill.

A small brown bird with a brown
crown has a white belly.

This black bird has no other
colors with a short bill.

An orange bird with green
wings and blue head.

A black bird with a red head.

This particular bird with a red head
and breast and features grey wing

M.Polato - (Deep) Generative models
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CF-GAN: COLLABORATIVE FILTERING

i ) 2 m I
@ W Q||@ |O \gradient
8 . @@ O ..o
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real purchase vectors
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VAE: SENTENCE INTERPOLATION

“ i want to talk to you . ”

“ want to be with you . ”
“, do n’t want to be with you .
i do n’t want to be with you .

»

she did n’t want to be with him .

he was silent for a long moment .

he was silent for a moment .
it was quiet for a moment .
it was dark and cold .

there was a pause .

it was my turn .

there is no one else in the world .
there is no one else in sight .

they were the only ones who mattered .
they were the only ones left .

he had to be with me .

she had to be with him .

i had to do this .

i wanted to kill him .

1 started to cry .

i turned to him .

RNNs work

M.Polato - (Deep) Generative models

work
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2

<EOS> RNNs work
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M.Polato -

VAE: MOTION FORECASTING IN
STATIC IMAGES

(Deep) Generative models
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: COLLABORATIVE FILTERING

(a) ML-20M

Recall@20 Recall@50 NDCG@100

L
0.16 A B .
8 0.15 -
g model
0.14 1 —— CDAE
~—- VAE-CF
134 H  [eesmses Q-VAE
=-== AutoRec
0.12 - T T T T T
200 400 600 800 1000

Epoch
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Mult-vAETR 0.395 0.537 0.426
Mult-DAE 0.387 0.524 0.419
WMF 0.360 0.498 0.386
SLim 0.370 0.495 0.401
CDAE 0.391 0.523 0.418
(b) Netflix
Recall@20 Recall@50 NDCG@100
Mult-vAg®R 0.351 0.444 0.386
Mult-DAE 0.344 0.438 0.380
WMF 0.316 0.404 0.351
SLim 0.347 0.428 0.379
CDAE 0.343 0.428 0.376
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CONDITIONED VAE

Ty

decoder

condition

C-VAE Architecture
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Latent space visualization through PCA
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Action
Adventure
Animation
Children
Comedy
Crime
Documentary
Drama
Fantasy
Film-Noir
Horror
IMAX
Musical
Mystery
Romance
Sci-Fi
Thriller
War
Western
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Does anyone have any questions?
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mpolato@math.unipd.it
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