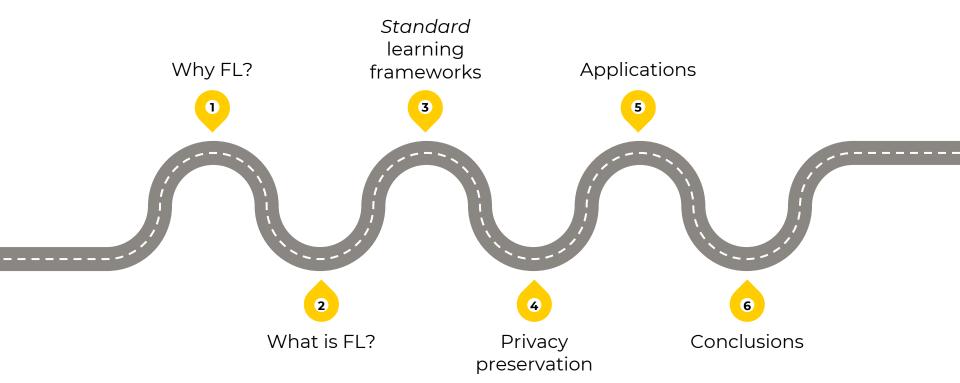


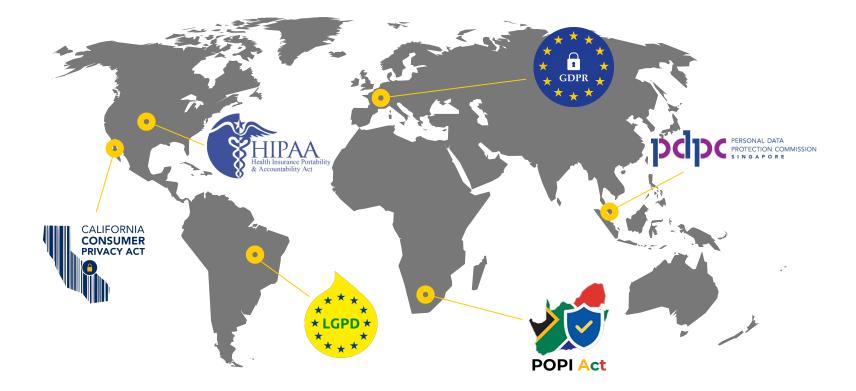
FEDERATED LEARNING an Overview

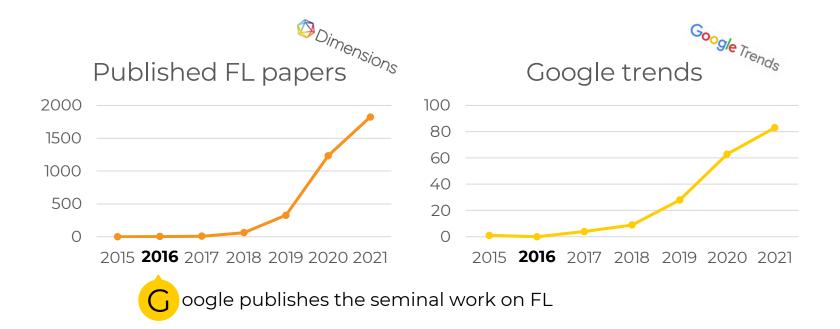
Mirko **Polato**, Ph.D.

Assistant Professor @ Dept. of Computer Science, University of Turin



The main reasons behind this new learning paradigm

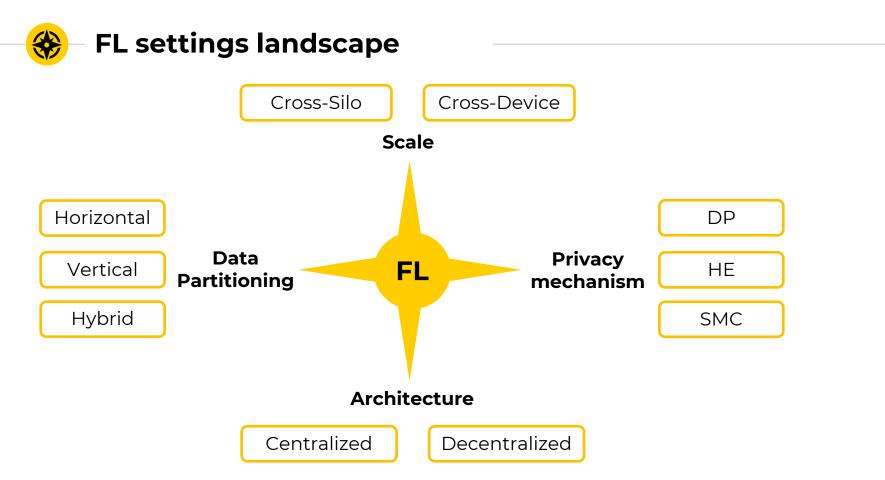


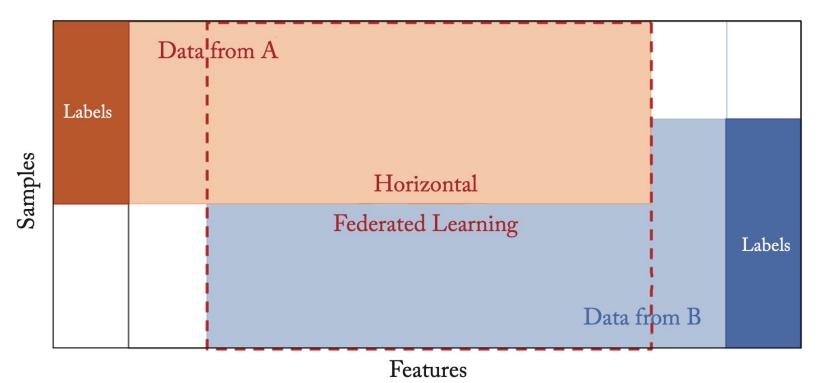


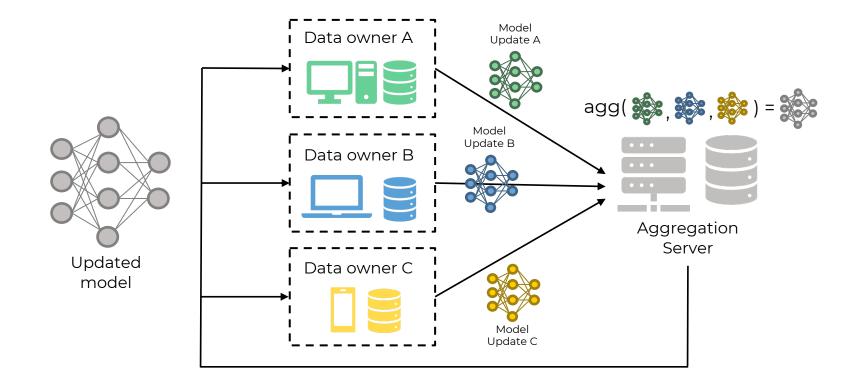
Definition and overview of the FL taxonomy

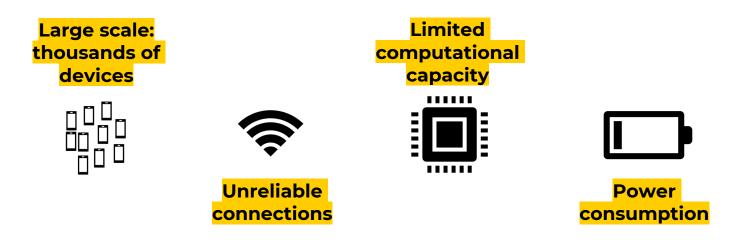
Federated Learning is a machine learning setting where multiple entities (clients) collaborate in solving a machine learning problem, under the coordination of a central server. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective.

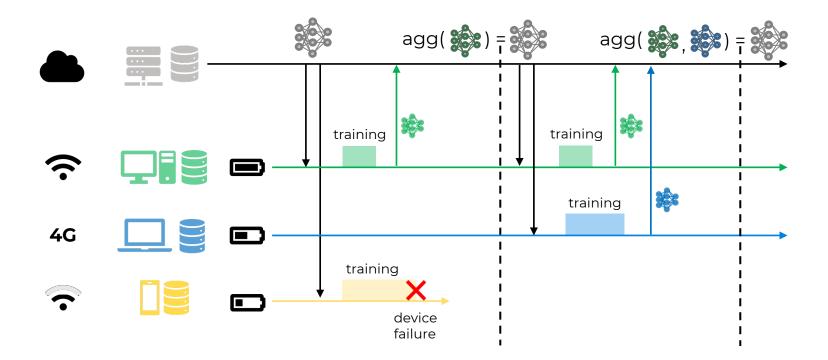
	Parties	Data	Learning	Performance	
Centralized	Server	${\cal D}$	On the server	P	
Non-federated	Clients	$\mathcal{D}\equiv \cup_{i=1}^N \mathcal{D}_i$	On clients	$P_i \leq P$	
Federated	Clients Server	$\mathcal{D}\equiv \cup_{i=1}^N \mathcal{D}_i$	Collaborative	\hat{P}	
Goals					
Clients do not share their data					
Clients benefit from the federation			$P_i \leq \hat{P}$		
The federated m	odel is close to	$P - \hat{P} \le \delta \delta$	$\delta \to 0$		

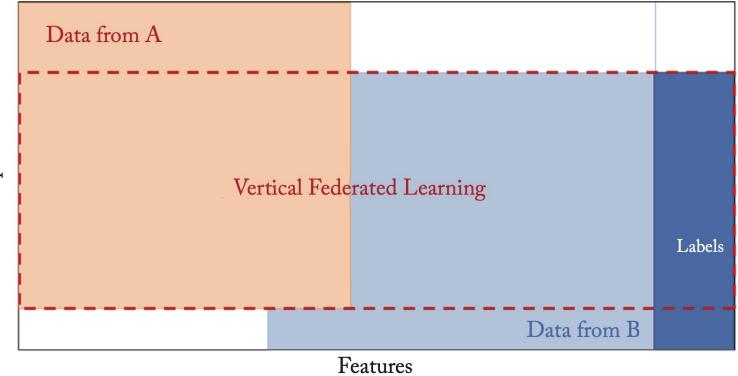


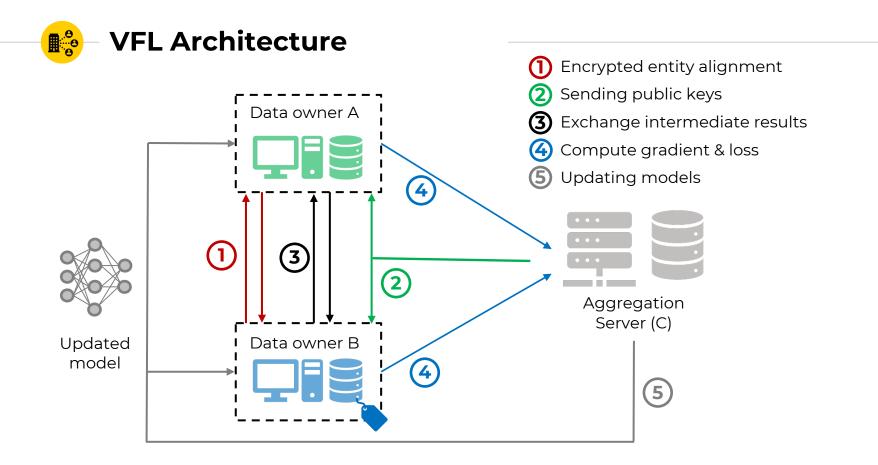


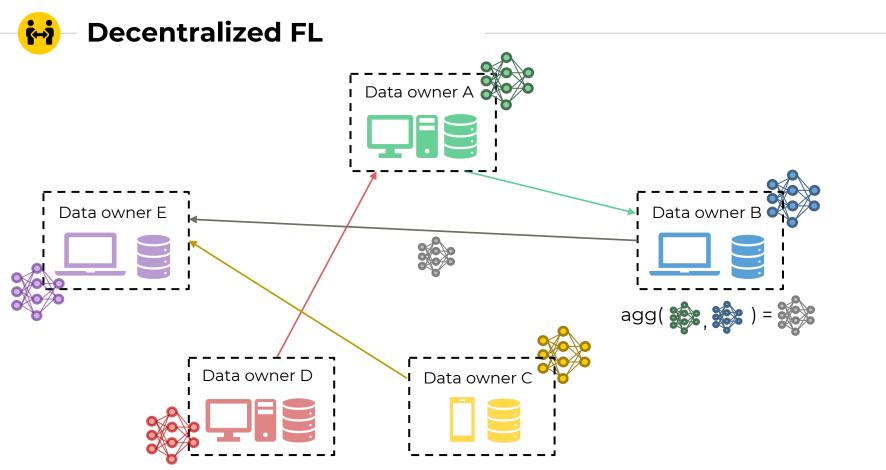












	Centralized	Decentralized
Orchestration	Server	No centralized orchestration*
Topology	Hub-and-spoke	Peer-to-peer
Global model	Single	Many
Setup	Centralized	Consensus*

* A central authority might be needed!

Limited number of collaborators

Big local datasets Reliable connection/ participation

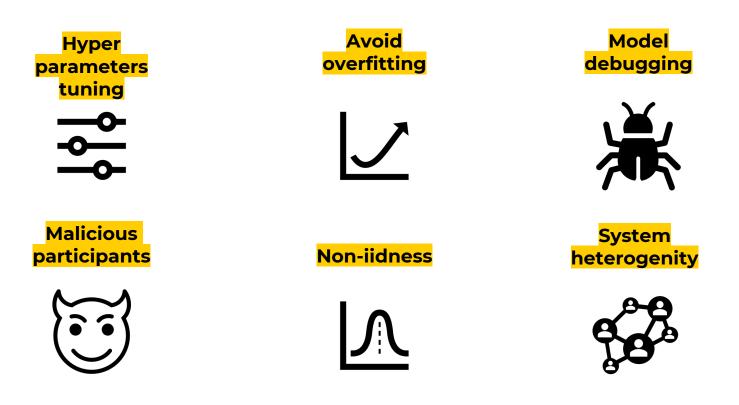
- Few organizations share incentives to train a model without sharing their data
- Or, same organization cannot centralized its data (e.g., legal constraints)

Free-rider problem

Organizations/compatitors may benefit from the federation without contributing as much

Assign FL model with performance commensurate with the contributions (game theory)

	Cross-Silo	Cross-Device
Availability	~Always	Small fraction available
Scale	2-100 clients	Up to 10 ¹⁰ clients
Addressability	Direct	No client identifier
Reliability	Few failures	Highly unreliable
Dataset size	Big	Relatively small



$$P_i(x,y) = P_i(y|x)P_i(x) = P_i(x|y)P_i(y)$$

Covariate shift $P_i(y|x) = P_j(y|x)$ $P_i(x) \neq P_j(x)$

Prior shift

 $P_i(x|y) = P_j(x|y)$ $P_i(y) \neq P_j(y)$

Concept drift

 $P_i(y) = P_j(y)$ $P_i(x|y) \neq P_j(x|y)$

Concept shift

 $P_i(y|x) \neq P_j(y|x)$ $P_i(x) = P_j(x)$

Quantity skew

Clients hold hugely different amounts of data

Standard Learning 3 - Frameworks

Learning in a federation

1. Setup task – Model initialization

- For each federated round:
 a. Broadcast the current global model
 - b. In parallel: clients update and send back the local models
 - c. Update global model with the users' ones

FedAvg (model averaging)

Aggregation Server

Algorithm: FedAvg

- 1. initialize model \overline{w}_0
- 2. for each round t=1,...:
- 3. Broadcast \overline{w}_{t-1}
- 4. select C eligible participants
- 5. foreach || participant p:
- 6. $w_t^p \leftarrow \text{LocalUpdate(p)}$
- 7. $\overline{w}_t \leftarrow \text{aggregate}(\forall p \ w_t^p)$

Does not guarantee converge

Algorithm: LocalUpdate

1. $w \leftarrow \text{global model from Server}$ 2. for each epoch $s \in 1, ..., S$: 3. for each batch b: 4. $g_b \leftarrow \text{compute gradient for b}$ 5. $w \leftarrow w - \eta g_b$ 6. send w to the Server

- Practically works most of the time
- **Efficient (communication-wise)**

Not bound to SGD

FedSgd (gradient averaging)

Aggregation Server

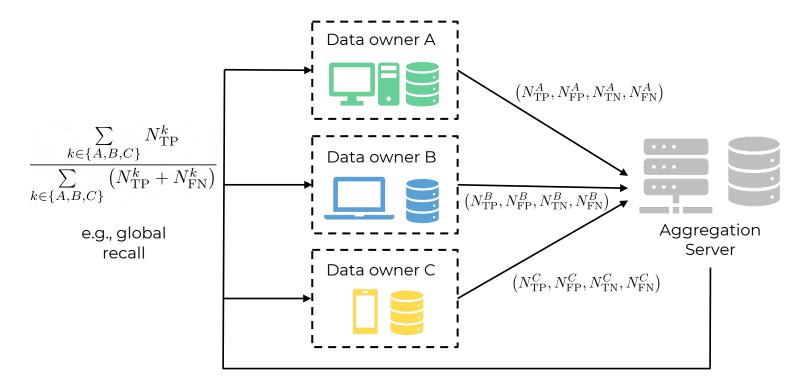
Algorithm: FedSgd

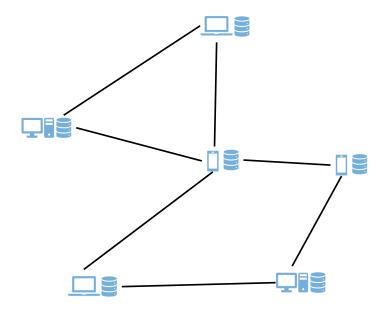
- 1. initialize model \overline{w}_0
- 2. for each round t=1,...:
- 3. Broadcast \overline{w}_{t-1}
- 4. select C eligible participants
- 5. foreach || participant p:
- 6. $g_t^p \leftarrow \text{LocalUpdate(p)}$
- 7. $g_t \leftarrow \text{aggregate}(\forall p \ g_t^p)$
- 8. $\overline{w}_t \leftarrow \overline{w}_{t-1} \eta g_t$

Inefficient (communication-wise)

Algorithm: LocalUpdate

- **1.** $w \leftarrow \text{global model from Server}$
- 2. select batch b
- 3. $g_b \leftarrow$ compute gradient for b
- 4. send g_b to the Server

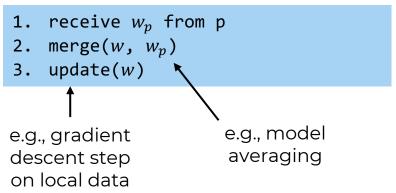




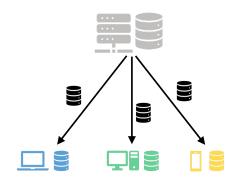
Algorithm: Main gossip loop (Push)

- 1. initialize local model w
- 2. loop (forever)
- 3. wait for a fixed time Δ
- 4. select neighbor peer p
- 5. send w to p

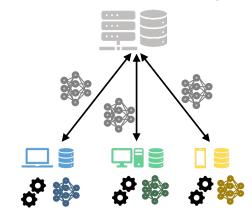
Algorithm: **On receive model**

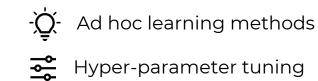


Data augmentation



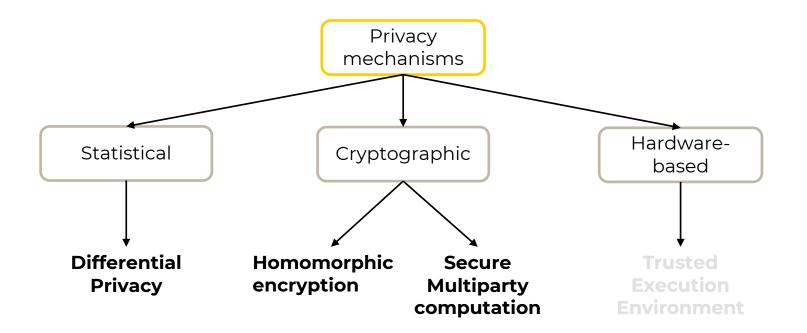
Personalization: It's a feature not a bug!

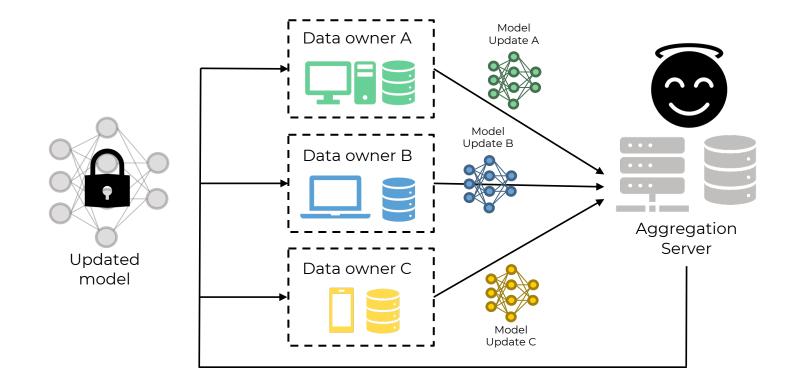




How to improve privacy in FL

Gradient/model updates may leak information about the user data!





Aggregation Server

Algorithm: FedAvg

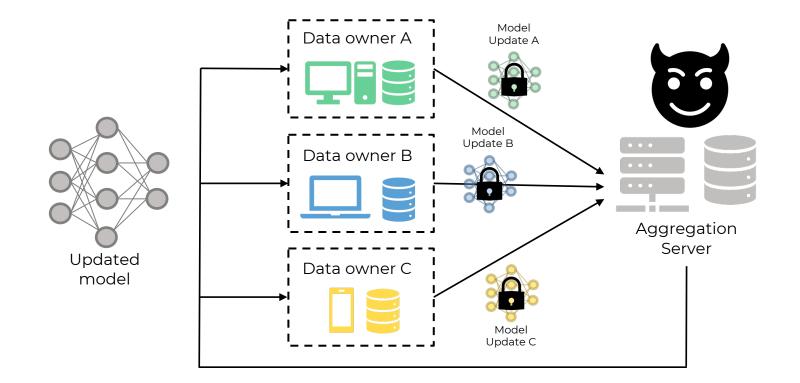
- 1. Initialize model \overline{w}_0
- 2. for each round t=1,...:
- 3. Broadcast \overline{w}_{t-1} + noise
- 4. select C eligible participants
- 5. foreach || participant p:

6.
$$w_t^p \leftarrow \text{LocalUpdate}(p)$$

7. $\overline{w}_t \leftarrow \text{aggregate}(\forall p \ w_t^p)$

Algorithm: LocalUpdate

1. $w \leftarrow \text{global model from Server}$ 2. for each epoch $s \in 1, ..., S$: 3. for each batch b: 4. $g_b \leftarrow \text{compute gradient for b}$ 5. $w \leftarrow w - \eta g_b$ 6. send w to the Server



Aggregation Server

Algorithm: FedAvg

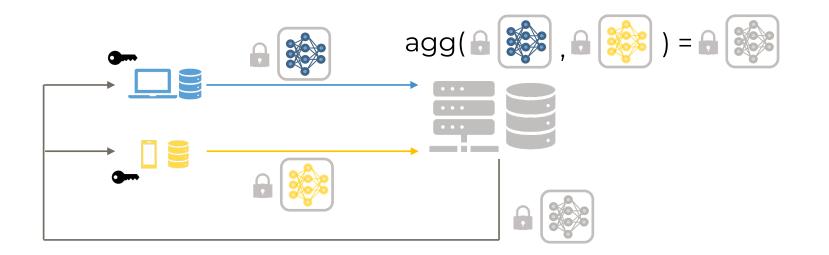
- 1. Initialize model \overline{w}_0
- 2. for each round t=1,...:
- 3. Broadcast \overline{w}_{t-1}
- 4. select C eligible participants
- 5. foreach || participant p:
- 6. $w_t^p \leftarrow \text{LocalUpdate}(p)$
- 7. $\overline{w}_t \leftarrow \text{aggregate}(\forall p \ w_t^p)$

Algorithm: LocalUpdate

1. $w \leftarrow \text{global model from Server}$ 2. for each epoch $s \in 1, ..., S$: 3. for each batch b: 4. $g_b \leftarrow \text{compute gradient for b}$ 5. $w \leftarrow w - \eta g_b$ 6. send (w + noise) to the Server

It may affect the performance

Homomorphic Encryption



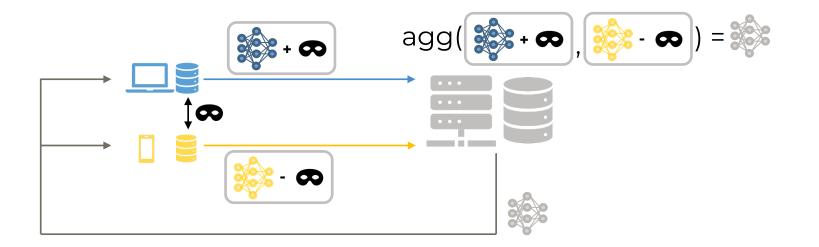
Aggregation Server

Algorithm: FedAvg

- 1. Initialize model \overline{w}_0
- 2. for each round t=1,...:
- 3. Broadcast \overline{w}_{t-1}
- 4. select C eligible participants
- 5. foreach || participant p:
- 6. $enc(w_t^p) \leftarrow LocalUpdate(p)$
- 7. $\overline{w}_t \leftarrow \text{aggregate_he}(\forall p \text{ enc}(w_t^p))$

Algorithm: LocalUpdate

	$w_{enc} \leftarrow \text{global model from Server}$ $w \leftarrow \text{decrypt}(w_{enc})$		
3.	for each epoch $s \in 1,, S$:		
4.	for each batch b:		
5.	$g_b \leftarrow$ compute gradient for b		
6.	$w \leftarrow w - \eta g_h$		
7.	<pre>send encrypt(w) to the Server</pre>		



Aggregation Server

Collaborator/Client

Algorithm: **FedAvg**

- 1. initialize model \overline{w}_0
- 2. for each round t=1,...:
- 3. Broadcast \overline{w}_{t-1}
- 4. select C eligible participants
- 5. foreach || participant p:
- 6. $mask(w_t^p) \leftarrow LocalUpdate(p)$
- 7. $\overline{w}_t \leftarrow \operatorname{agg_smc}(\forall p \operatorname{mask}(w_t^p))$

Algorithm: OneTimePadAgreement

- 1. For each active client p:
- 2. agree on perturbation s_p

Algorithm: LocalUpdate

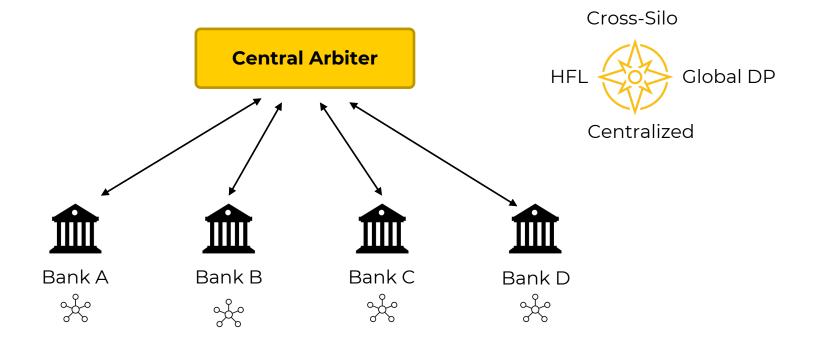
- 1. $w \leftarrow \text{global model from Server}$
- 2. for each epoch $s \in 1, ..., S$:
- 3. for each batch b:
 - $g_b \leftarrow$ compute gradient for b

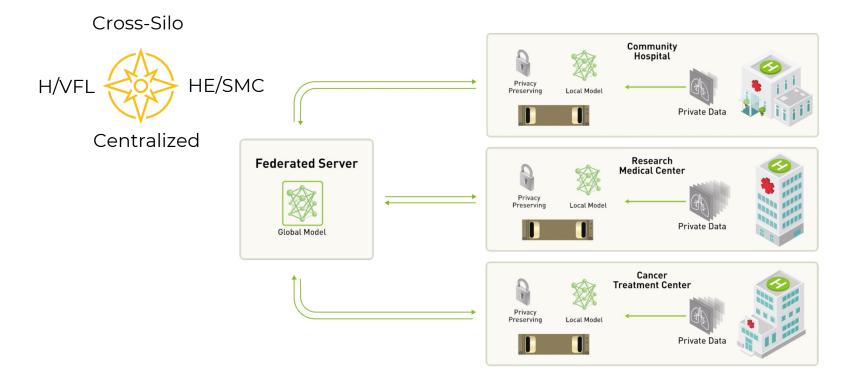
5. $w \leftarrow w - \eta g_b$

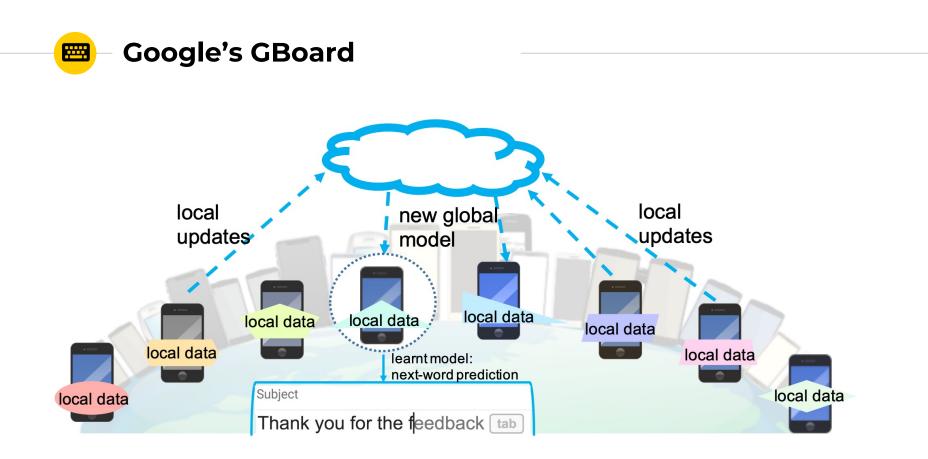
4.

6. send mask(w, $\forall p s_p$) to the Server

Some use cases and real-world examples of FL

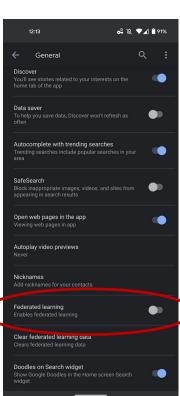


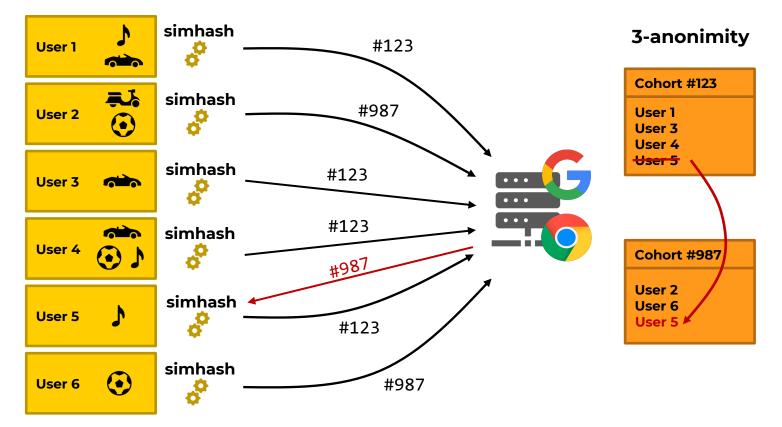




Google's "Hey Google!" recognition

11:11	🚓 🖄 LTE ⊿ 🗎 94	4%
÷		:
Help impr	ove Assistant	
	ch technologies can learn /er time	
Improve Assistant's speec Save audio recordings on this Google improve speech tech Your audio recordings stay or privacy-preserving technolog from you and many other par Assistant learn over time and features. Learn more	e device and help nologies for everyone. In your device while a y combines information ticipants to help	





The glorious "take home message"

• Attacks to FL systems

Federated Transfer Learning

 Improve communication efficiency, e.g., model quantization

FL is a "novel" yet interesting framework for privacy-preseving ML

- FL methods must be designed considering the communication-computation-privacyeffectiveness trade-off
- FL is still in its infancy and there are many open problems

Thanks!

Any Questions?

The only stupid question is the one you were afraid to ask but never did.

Richard Suffon

- Li, et al. 'A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection', 2021. <u>http://arxiv.org/abs/1907.09693</u>.
- Kairouz, et al. 'Advances and Open Problems in Federated Learning'. Foundations and Trends in Machine Learning 14, 2021. <u>https://doi.org/10.1561/2200000083</u>.
- Yang et al. 'Federated Learning'. Synthesis Lectures on Artificial Intelligence and Machine Learning 13, 2019. <u>https://doi.org/10.2200/S00960ED2V01Y201910AIM043</u>.
- Li, et al. 'Federated Learning: Challenges, Methods, and Future Directions', 2019. https://arxiv.org/abs/1908.07873
- Bonawitz, et al. 'Practical Secure Aggregation for Federated Learning on User-Held Data'. 2016. <u>http://arxiv.org/abs/1611.04482</u>.
- McMahan, et al. 'Communication-efficient learning of deep networks from decentralized data', 2016. https://arxiv.org/abs/1602.05629