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Why FL?
The main reasons behind this new learning paradigm
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Data protection regulations
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POPI Act



FL is on fire!
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What is FL?
Definition and overview of the FL taxonomy
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Informal definition

Federated Learning is a machine learning setting 
where multiple entities (clients) collaborate in solving a 
machine learning problem, under the coordination of a 

central server. Each client’s raw data is stored locally and 
not exchanged or transferred; instead, focused updates 

intended for immediate aggregation are used to 
achieve the learning objective. 
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“Formal” definition
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FL settings landscape
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Horizontal FL
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Standard HFL architecture
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(Cross-device) FL 
characteristics
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Vertical FL
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VFL Architecture
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Decentralized FL
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Centralized vs 
Decentralized
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Orchestration

Topology

Global model

Setup

Hub-and-spoke Peer-to-peer

Single Many

Centralized Consensus*

Server No centralized orchestration*

Centralized Decentralized

* A central authority might be needed!



Cross-Silo FL

◉ Few organizations share incentives to train a 
model without sharing their data

◉ Or, same organization cannot centralized its 
data (e.g., legal constraints)

18

Limited 
number of 

collaborators

Big local 
datasets

Reliable 
connection/
participation 



Cross-Silo: incentives
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Free-rider problem
Organizations/compatitors may benefit from the federation without 
contributing as much

Monetary payout

Assign FL model with performance commensurate with
the contributions (game theory)



Cross-Silo vs Cross-Device
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Availability

Scale

Addressability

Reliability

2-100 clients Up to 1010 clients

Direct No client identifier

Highly unreliableFew failures

~Always Small fraction available

Cross-Silo Cross-Device

Dataset size Big Relatively small



Challenges
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Non-identical client 
distributions
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Covariate shift Prior shift Concept drift

Concept shift Quantity skew
Clients hold 

hugely different 
amounts of data



Standard
Learning 
Frameworks
Learning in a federation

3
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General Learning Scheme

1. Setup task – Model initialization

2. For each federated round:
a. Broadcast the current global model

b. In parallel: 
clients update and send back the local models

c. Update global model with the users’ ones
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FedAvg (model averaging)
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Aggregation Server Collaborator/Client

1. initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:  
6. 𝑤"

% ← LocalUpdate(p)
7. !𝑤" ← aggregate(∀𝑝 𝑤"

%)

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send 𝑤 to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.

Does not guarantee converge
Practically works most of the time

Efficient (communication-wise)

Not bound to SGD



FedSgd (gradient averaging)
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Aggregation Server Collaborator/Client

1. initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:  
6. 𝑔"

% ← LocalUpdate(p)
7. 𝑔" ← aggregate(∀𝑝 𝑔"

%)
8. !𝑤" ← !𝑤"#$ − 𝜂𝑔"

1. 𝑤 ← global model from Server
2. select batch b
3. 𝑔& ← compute gradient for b
4. send 𝑔& to the Server

Algorithm: FedSgd Algorithm: LocalUpdate

1.

3.

Inefficient (communication-wise) Guaranteed convergence
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Gossip Learning
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1. initialize local model 𝑤
2. loop (forever)
3. wait for a fixed time ∆
4. select neighbor peer p
5. send 𝑤 to p

1. receive 𝑤% from p
2. merge(𝑤, 𝑤%)
3. update(𝑤)

Algorithm: Main gossip loop (Push)

Algorithm: On receive model

e.g., gradient 
descent step 
on local data

e.g., model 
averaging



Dealing with non-iidness
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Data augmentation

Hyper-parameter tuning

Ad hoc learning methods

Personalization: It’s 
a feature not a bug!



Privacy 
preservation
How to improve privacy in FL
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FL may be not enough
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Gradient/model updates may leak information about the user data!

Differential
Privacy

Homomorphic 
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Secure
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Privacy 
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Hardware-
based CryptographicStatistical



Global Differential Privacy
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FedAvg + Global DP
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Aggregation Server Collaborator/Client

1. Initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$ + noise
4. select C eligible participants
5. foreach|| participant p:  
6. 𝑤"

% ← LocalUpdate(p)
7. !𝑤" ← aggregate(∀𝑝 𝑤"

%)

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send 𝑤 to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.

Not safe with honest-but-curious servers



Local Differential Privacy
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FedAvg + Local DP
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Aggregation Server Collaborator/Client

1. Initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:  
6. 𝑤"

% ← LocalUpdate(p)
7. !𝑤" ← aggregate(∀𝑝 𝑤"

%)

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send (𝑤 + noise) to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.

It may affect the performance



Homomorphic Encryption
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FedAvg + HE
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Aggregation Server Collaborator/Client

1. Initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:  
6. enc(𝑤"

%) ← LocalUpdate(p)
7. !𝑤" ← aggregate_he(∀𝑝 enc(𝑤"

%))

1. 𝑤'() ← global model from Server
2. 𝑤 ← decrypt(𝑤'())
3. for each epoch 𝑠 ∈ 1,… , 𝑆:
4. for each batch b:
5. 𝑔& ← compute gradient for b
6. 𝑤 ← 𝑤 − 𝜂𝑔&
7. send encrypt(𝑤) to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.
2.

Computationally expensive



Secure Multiparty 
Computation
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FedAvg + SMC
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Aggregation Server Collaborator/Client

1. initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:  
6. mask(𝑤"

%) ← LocalUpdate(p)
7. !𝑤" ← agg_smc(∀𝑝 mask(𝑤"

%))

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send mask(𝑤,∀𝑝 𝑠%) to the Server

Algorithm: FedAvg

Algorithm: LocalUpdate

1.

Weigh down the 
communication protocol

Algorithm: OneTimePadAgreement

1. For each active client p:
2. agree on perturbation 𝑠%



Applications
Some use cases and real-world examples of FL
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Use case 1
Anti-money laundering
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Use case 2
Medical diagnosis
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Google’s GBoard
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Google’s “Hey Google!” 
recognition 

44



Google’s Federated 
Learning Of Cohorts
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Conclusions
The glorious “take home message”
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What we did not cover

◉ Attacks to FL systems

◉ Federated Transfer Learning

◉ Improve communication efficiency, e.g., model 
quantization

◉ Fairness
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Take home message J

◉ FL is a “novel” yet interesting framework for 
privacy-preseving ML

◉ FL methods must be designed considering the 
communication-computation-privacy-
effectiveness trade-off

◉ FL is still in its infancy and there are many open 
problems 
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“

Any Questions ?
Thanks!

The only stupid question is the one you were 
afraid to ask but never did.

Richard Sutton
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