
FEDERATED LEARNING
An Overview

Mirko Polato, Ph.D.

Assistant Professor @ Dept. of Computer Science, University of Turin

Roadmap

2

1 3 5

642

Why FL?

Standard
learning

frameworks Applications

What is FL? Privacy
preservation

Conclusions

Why FL?
The main reasons behind this new learning paradigm

1

Data protection regulations

4

POPI Act

FL is on fire!

5

0

500

1000

1500

2000

2015 2017 2018 2019 2020 2021

Published FL papers

0

20

40

60

80

100

2015 2017 2018 2019 2020 2021

Google trends

G oogle publishes the seminal work on FL

2016 2016

What is FL?
Definition and overview of the FL taxonomy

2

Informal definition

Federated Learning is a machine learning setting
where multiple entities (clients) collaborate in solving a
machine learning problem, under the coordination of a

central server. Each client’s raw data is stored locally and
not exchanged or transferred; instead, focused updates

intended for immediate aggregation are used to
achieve the learning objective.

7

“Formal” definition

8

Non-federated

Centralized

Federated

DataParties Learning

Server

Clients

Clients
Server

On clients

On the server

Collaborative

Performance

Goals

Clients benefit from the federation

The federated model is close to the “ideal” one

Clients do not share their data

FL settings landscape

9

FLData
Partitioning

Scale

Architecture

Privacy
mechanism

Horizontal

Vertical

Hybrid

DP

HE

SMC

Centralized Decentralized

Cross-Silo Cross-Device

Horizontal FL

10

Standard HFL architecture

11

Aggregation
Server

Data owner A

Data owner B

Data owner CUpdated
model

Model
Update A

Model
Update B

Model
Update C

agg() =, ,

(Cross-device) FL
characteristics

12

Large scale:
thousands of

devices

Unreliable
connections

Limited
computational

capacity

System heterogenity

Power
consumption

13

4G

training

training

device
failure

training

training

agg() =

System heterogenity

agg() =,

Vertical FL

14

VFL Architecture

15

Aggregation
Server (C)

Data owner A

Data owner BUpdated
model

1

4

5

2
3

4

1
2
3
4
5

Encrypted entity alignment

Sending public keys

Exchange intermediate results

Compute gradient & loss

Updating models

Decentralized FL

16

Data owner A

Data owner E

Data owner D

Data owner B

Data owner C

) =,agg(

Centralized vs
Decentralized

17

Orchestration

Topology

Global model

Setup

Hub-and-spoke Peer-to-peer

Single Many

Centralized Consensus*

Server No centralized orchestration*

Centralized Decentralized

* A central authority might be needed!

Cross-Silo FL

◉ Few organizations share incentives to train a
model without sharing their data

◉ Or, same organization cannot centralized its
data (e.g., legal constraints)

18

Limited
number of

collaborators

Big local
datasets

Reliable
connection/
participation

Cross-Silo: incentives

19

Free-rider problem
Organizations/compatitors may benefit from the federation without
contributing as much

Monetary payout

Assign FL model with performance commensurate with
the contributions (game theory)

Cross-Silo vs Cross-Device

20

Availability

Scale

Addressability

Reliability

2-100 clients Up to 1010 clients

Direct No client identifier

Highly unreliableFew failures

~Always Small fraction available

Cross-Silo Cross-Device

Dataset size Big Relatively small

Challenges

21

Hyper
parameters

tuning

Malicious
participants

Avoid
overfitting

Model
debugging

Non-iidness
System

heterogenity

Non-identical client
distributions

22

Covariate shift Prior shift Concept drift

Concept shift Quantity skew
Clients hold

hugely different
amounts of data

Standard
Learning
Frameworks
Learning in a federation

3

23

General Learning Scheme

1. Setup task – Model initialization

2. For each federated round:
a. Broadcast the current global model

b. In parallel:
clients update and send back the local models

c. Update global model with the users’ ones

24

FedAvg (model averaging)

25

Aggregation Server Collaborator/Client

1. initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:
6. 𝑤"

% ← LocalUpdate(p)
7. !𝑤" ← aggregate(∀𝑝 𝑤"

%)

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send 𝑤 to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.

Does not guarantee converge
Practically works most of the time

Efficient (communication-wise)

Not bound to SGD

FedSgd (gradient averaging)

26

Aggregation Server Collaborator/Client

1. initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:
6. 𝑔"

% ← LocalUpdate(p)
7. 𝑔" ← aggregate(∀𝑝 𝑔"

%)
8. !𝑤" ← !𝑤"#$ − 𝜂𝑔"

1. 𝑤 ← global model from Server
2. select batch b
3. 𝑔& ← compute gradient for b
4. send 𝑔& to the Server

Algorithm: FedSgd Algorithm: LocalUpdate

1.

3.

Inefficient (communication-wise) Guaranteed convergence

27

Aggregation
Server

Data owner A

Data owner B

Data owner C

e.g., global
recall

Model evaluation
(classification)

Gossip Learning

28

1. initialize local model 𝑤
2. loop (forever)
3. wait for a fixed time ∆
4. select neighbor peer p
5. send 𝑤 to p

1. receive 𝑤% from p
2. merge(𝑤, 𝑤%)
3. update(𝑤)

Algorithm: Main gossip loop (Push)

Algorithm: On receive model

e.g., gradient
descent step
on local data

e.g., model
averaging

Dealing with non-iidness

29

Data augmentation

Hyper-parameter tuning

Ad hoc learning methods

Personalization: It’s
a feature not a bug!

Privacy
preservation
How to improve privacy in FL

4

FL may be not enough

31

Gradient/model updates may leak information about the user data!

Differential
Privacy

Homomorphic
encryption

Secure
Multiparty

computation

Privacy
mechanisms

Hardware-
based CryptographicStatistical

Global Differential Privacy

32

Aggregation
Server

Data owner A

Data owner B

Data owner CUpdated
model

Model
Update A

Model
Update B

Model
Update C

FedAvg + Global DP

33

Aggregation Server Collaborator/Client

1. Initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$ + noise
4. select C eligible participants
5. foreach|| participant p:
6. 𝑤"

% ← LocalUpdate(p)
7. !𝑤" ← aggregate(∀𝑝 𝑤"

%)

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send 𝑤 to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.

Not safe with honest-but-curious servers

Local Differential Privacy

34

Aggregation
Server

Data owner A

Data owner B

Data owner CUpdated
model

Model
Update A

Model
Update B

Model
Update C

FedAvg + Local DP

35

Aggregation Server Collaborator/Client

1. Initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:
6. 𝑤"

% ← LocalUpdate(p)
7. !𝑤" ← aggregate(∀𝑝 𝑤"

%)

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send (𝑤 + noise) to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.

It may affect the performance

Homomorphic Encryption

36

=

agg() =,

FedAvg + HE

37

Aggregation Server Collaborator/Client

1. Initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:
6. enc(𝑤"

%) ← LocalUpdate(p)
7. !𝑤" ← aggregate_he(∀𝑝 enc(𝑤"

%))

1. 𝑤'() ← global model from Server
2. 𝑤 ← decrypt(𝑤'())
3. for each epoch 𝑠 ∈ 1,… , 𝑆:
4. for each batch b:
5. 𝑔& ← compute gradient for b
6. 𝑤 ← 𝑤 − 𝜂𝑔&
7. send encrypt(𝑤) to the Server

Algorithm: FedAvg Algorithm: LocalUpdate

1.
2.

Computationally expensive

Secure Multiparty
Computation

38

=++ - +

agg() =+

-

+ -,

FedAvg + SMC

39

Aggregation Server Collaborator/Client

1. initialize model !𝑤!
2. for each round t=1,…:
3. Broadcast !𝑤"#$
4. select C eligible participants
5. foreach|| participant p:
6. mask(𝑤"

%) ← LocalUpdate(p)
7. !𝑤" ← agg_smc(∀𝑝 mask(𝑤"

%))

1. 𝑤 ← global model from Server
2. for each epoch 𝑠 ∈ 1,… , 𝑆:
3. for each batch b:
4. 𝑔& ← compute gradient for b
5. 𝑤 ← 𝑤 − 𝜂𝑔&
6. send mask(𝑤,∀𝑝 𝑠%) to the Server

Algorithm: FedAvg

Algorithm: LocalUpdate

1.

Weigh down the
communication protocol

Algorithm: OneTimePadAgreement

1. For each active client p:
2. agree on perturbation 𝑠%

Applications
Some use cases and real-world examples of FL

5

Use case 1
Anti-money laundering

41

Central Arbiter

Bank A Bank B Bank C Bank D

Cross-Silo

HFL Global DP

Centralized

Use case 2
Medical diagnosis

42

Cross-Silo

H/VFL HE/SMC

Centralized

Google’s GBoard

43

Google’s “Hey Google!”
recognition

44

Google’s Federated
Learning Of Cohorts

45

User 1

User 2

User 3

User 4

User 5

User 6

User 1
User 3
User 4
User 5

User 2
User 6

Cohort #123

Cohort #987

3-anonimitysimhash

simhash

simhash

simhash

simhash

simhash

#123

#123

#123

#123

#987

#987

#987

User 5

Conclusions
The glorious “take home message”

6

What we did not cover

◉ Attacks to FL systems

◉ Federated Transfer Learning

◉ Improve communication efficiency, e.g., model
quantization

◉ Fairness

47

Take home message J

◉ FL is a “novel” yet interesting framework for
privacy-preseving ML

◉ FL methods must be designed considering the
communication-computation-privacy-
effectiveness trade-off

◉ FL is still in its infancy and there are many open
problems

48

“

Any Questions ?
Thanks!

The only stupid question is the one you were
afraid to ask but never did.

Richard Sutton

Resources

◉ Li, et al. ‘A Survey on Federated Learning Systems: Vision, Hype and Reality for
Data Privacy and Protection’, 2021. http://arxiv.org/abs/1907.09693.

◉ Kairouz, et al. ‘Advances and Open Problems in Federated Learning’.
Foundations and Trends in Machine Learning 14, 2021.
https://doi.org/10.1561/2200000083.

◉ Yang et al. ‘Federated Learning’. Synthesis Lectures on Artificial Intelligence and
Machine Learning 13, 2019. https://doi.org/10.2200/S00960ED2V01Y201910AIM043.

◉ Li, et al. ‘Federated Learning: Challenges, Methods, and Future Directions’, 2019.
https://arxiv.org/abs/1908.07873

◉ Bonawitz, et al. ‘Practical Secure Aggregation for Federated Learning on User-
Held Data’. 2016. http://arxiv.org/abs/1611.04482.

◉ McMahan, et al. ‘Communication-efficient learning of deep networks from
decentralized data’, 2016. https://arxiv.org/abs/1602.05629

50

http://arxiv.org/abs/1907.09693
https://doi.org/10.1561/2200000083
https://doi.org/10.2200/S00960ED2V01Y201910AIM043
http://arxiv.org/abs/1611.04482

